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A major concern with integrating large language model (LLM) services (e.g., ChatGPT) into workplaces is that employees
may inadvertently leak sensitive information through their prompts. Since user prompts can involve arbitrary vocabularies,
conventional data leak mitigation solutions, such as string-matching-based filtering, often fall short. We present GPTWall,
a privacy firewall that helps internal admins create and manage policies to mitigate data leaks in prompts sent to external
LLM services. GPTWall’s key innovations are (1) introducing a lightweight LLM running on the edge to obfuscate target
information in prompts and restore the information after receiving responses, and (2) helping admins author fine-grained
disclosure policies through programming by example. We evaluated GPTWall with 12 participants and found that they could
create an average of 17.7 policies within 30 minutes, achieving an increase of 29% in precision and 22% in recall over the
state-of-the-art data de-identification tool.
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1 Introduction
Organizations are integrating ChatGPT into their workplaces to enhance employee productivity. However, a
major concern is that employees may leak sensitive information inadvertently through the prompts sent to
ChatGPT [31]. For example, Samsung Electronics [53] and Apple [89] ban employee use of ChatGPT after
discovering staff include sensitive code and meeting notes in their prompts.

One classical solution to prevent similar data leaks is introducing a man-in-the-middle firewall [19, 68] using
string-matching filters. For example, Microsoft Exchange [19] allows internal network administrators (admins) to
develop regular expressions to detect whether an outgoing email contains a U.S. social security number. However,
these string-matching filters are increasingly tenuous in managing these data leaks, since it is hard to create
complex regex patterns for a specific type of data leak [59], manage a large number of policies [11], and debug
these policies when the behaviors do not match with their expectations [6, 92]. Recently, the popularity of LLM
services has made the problem even more severe, as the outgoing prompts are more diverse and the information
flows are more centralized compared to emails [18, 53, 89].
This paper introduces GPTWall, a privacy firewall that helps internal admins create and manage policies to

mitigate data leaks in prompts sent to external LLM services. GPTWall has two key ideas. First, we introduce a
lightweight LLM running on the edge to obfuscate target information in prompts and restore the information

Authors’ Contact Information: Qiyu Li, University of California, San Diego, La Jolla, USA, qiyuli@ucsd.edu; Jinhe Wen, University of
California, San Diego, La Jolla, USA, jhw@ucsd.edu; Haojian Jin, University of California, San Diego, La Jolla, USA, haojian@ucsd.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
© 2024 ACM.
ACM XXXX-XXXX/2024/10-ART
https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: October 2024.

HTTPS://ORCID.ORG/0009-0004-5174-9844
HTTPS://ORCID.ORG/0009-0003-7334-1340
HTTPS://ORCID.ORG/0000-0001-5212-2235
https://doi.org/XXXXXXX.XXXXXXX
https://orcid.org/0009-0004-5174-9844
https://orcid.org/0009-0003-7334-1340
https://orcid.org/0000-0001-5212-2235
https://doi.org/XXXXXXX.XXXXXXX


2 • Qiyu Li, Jinhe Wen and Haojian Jin

EdgeClient

ChatGPTGPTWallUser

Cloud

Original prompt Obfuscated prompt

Restored response Obfuscated response

Fig. 1. GPTWall uses an LLM running on the edge to identify sensitive information in prompts and obfuscate the prompts
before transmitting it to the external LLM service. Then GPTWall restores the information after receiving responses.

after receiving responses (Figure 1). Our key insight is that even though an edge LLM may be limited in reasoning
and knowledge tasks, it can still enable many lightweight privacy-enhancing operations that were previously
impossible. Second, GPTWall enables admins to author fine-grained disclosure policies through programming by
example (PbE). Admins can annotate the content they want to obfuscate or protect in example prompts. GPTWall
then analyzes these examples and suggests appropriate policies to the admins (Figure 3).
The design of GPTWall is based on an analysis of 50K conversations collected from ShareGPT [35] using

automated analysis and manual coding (Section 3). The analysis led to three insights: (1) users usually have limited
awareness of sensitive data leaks in ChatGPT conversations; (2) prompts provided by users often include a wide
range of privacy-sensitive information; and (3) the determination of whether the information is privacy-sensitive
heavily depends on the context of the prompt.
We implemented a prototype of GPTWall, which comprises a policy authoring interface and an edge LLM

service. We used Llama3-8B [56], a state-of-the-art lightweight open-source model as the edge LLM. To reduce the
latency, the edge LLM breaks prompts into smaller chunks and sends them asynchronously. We used OpenAI’s
streaming API [74] to handle ChatGPT responses in parallel as partial responses are received.
We conducted detailed experiments to validate the design of GPTWall. We first evaluated the parsing perfor-

mance of GPTWall to demonstrate the effectiveness of edge LLMs in identifying sensitive information (Section
7.1). Second, we evaluated the usability of our policy authoring interface with 12 users (Section 7.2). We asked
participants to play the role of admins to create policies and found that participants were able to create 17.7
policies within 30 minutes and achieved an increase of 29% in precision and 22% in recall compared to the state-
of-the-art data de-identification tool. Finally, we evaluated the effectiveness of our obfuscation methods against
attacks using real-world prompts selected from the ShareGPT dataset (Section 7.3) and examined GPTWall’s
impact on LLM response quality (Section 7.4). Our results show that GPTWall significantly reduces the risks of
inferring sensitive information from users’ prompts while maintaining response quality. Lastly, we evaluated
GPTWall’s system performance across various workplace scenarios (Section 7.5). Our experiments show that
GPTWall introduces modest performance overheads for most scenarios.
In this paper, our main contributions are as follows:
• An end-to-end prototype implementation of GPTWall, which demonstrates how a man-in-the-middle edge
LLM service can mitigate open-vocabulary data leaks.

• A mixed-methods analysis of a large real-world ChatGPT prompt dataset, suggesting the privacy-sensitive
information in prompts is highly context-dependent.

• A programming by example algorithm, along with the underlying policy representations, which could infer
policies from manually selected positive and negative examples.

• A detailed evaluation of GPTWall ’s privacy benefits and policy authoring usability.
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2 Related work
We have organized related studies into three categories: ChatGPT & ChatBot Privacy, Data Leak Prevention, and
Programming by Example.

2.1 ChatGPT & ChatBot Privacy
Users have raised multiple privacy concerns regarding the use of LLM and ChatBot services [76]. One major
concern is that providers may use users’ prompts for training, which could lead to data being leaked to other
users [65, 66]. In response, OpenAI started ChatGPT Enterprise, which claims, “We do not train on your business
data or conversations, and our models don’t learn from your usage” [73]. However, this does not prevent
the potential resale of data [32] or the possibility of unexpected data breaches that may expose users’ chat
history [20]. Furthermore, there is no way to verify OpenAI’s claim [30]. As a result, organizations are seeking
self-hosting solutions [7, 78], where they deploy open-source large language models (LLM) on local servers [78]
or infrastructure under their control (e.g., Microsoft Azure ChatGPT [7]). However, current open-source models
tend to exhibit inferior performance compared to proprietary services such as ChatGPT [29, 87], and the cost of
serving private LLMs can be steep [41, 52].

In contrast, GPTWall proposes using a lightweight edge LLM to enable a man-in-the-middle privacy firewall,
which obfuscates sensitive information before sending it to ChatGPT and then recovers the sensitive information
in the responses . Our key insight is that even though an edge LLM may be limited in reasoning and knowledge
tasks, it can still perform many lightweight privacy-enhancing operations, such as parsing, identifying, and
restoring open-vocabulary privacy-sensitive information.

2.2 Data Leak Prevention
Data leak prevention systems (DLPS) are widely used to prevent undesired disclosure by insiders [1, 4, 6, 27, 28].
These systems use content analysis techniques such as rule-based methods, regular expressions, fingerprinting,
named entity recognition [28, 33], and statistical analysis [4, 6] to detect sensitive data and deny disclosures
containing such data. For example, Microsoft Exchange allows admins to create rules based on keywords and
regular expressions to block Social Security Numbers (SSN) and other Personally Identifiable Information (PII) in
external emails [19]. However, these all-or-nothing approaches are often too coarse, inadvertently blocking many
benign inquiries.

More recently, data masking solutions seek to redact private information within the text [14, 42, 69, 76], rather
than blocking the disclosure. For example, Hide and Seek propose to create two lightweight models on the edge
to anonymize the outgoing prompt and de-anonymize the response, respectively [14]. However, these content
filtering implementations often rely on the identification of predefined categories (e.g., name, location, and SSN).
But the predefined data categories are often insufficient to clearly assess the privacy risks [23] since the sensitivity
of a given piece of information highly depends on the context of its use [70, 71]. In contrast, GPTWall uses an
edge LLM to parse prompts and dynamically annotate the semantics of individual contents. By implementing
this approach, GPTWall can develop policies that redact text in prompts based on specific contexts, such as entity
types, entity values, and their co-occurrences with other information.

2.3 Programming by Example
Programming-by-example (PbE) is widely used in various applications such as information extraction [26, 47],
data analysis [43], visualization [90], and programming [24]. The key challenge of learning policies from examples
is how to effectively generalize from the user samples and narrow down the search space with weak supervision.
For example, Ruler employs heuristics to narrow down the search space while learning labeling functions [22].

, Vol. 1, No. 1, Article . Publication date: October 2024.



4 • Qiyu Li, Jinhe Wen and Haojian Jin

Cornet hypothesizes the output and then greedily learns cell formatting rules using a decision tree model [81].
NetEgg explores the search space of the network policies by guessing possible consistent values [99].
GPTWall builds upon the rich lineage of PbE systems but differs from previous systems in three key aspects:

(1) it introduces a new underlying policy representation for privacy; (2) it uses LLMs as the engine to construct
the search space; and (3) it infers policies using both positive and negative examples.

3 Understanding Privacy Leaks in Large Language Model Prompts
To understand the privacy leaks in interaction with large language models, we investigated real-world ChatGPT
conversations shared by users using a combination of automatic parsing techniques and manual examination.
ShareGPT dataset. We used the ShareGPT dataset to analyze real-world practices of ChatGPT usage. The
ShareGPT dataset comprises 90K ChatGPT conversations users share through ShareGPT Chrome extensions [35].
Each conversation is indexed by a unique ID and consists of dialogues between humans and the ChatGPT agent.
The dataset may include sensitive information as users do not anticipate their data being publicized. We followed
the data processing in Vicuna [17] and only retained English conversations with about 50K conversations.
Method. We first used the Amazon Comprehend service [67] to detect privacy-sensitive prompts. We randomly
selected 300 prompts and manually examined them to investigate data leaks in ChatGPT conversations. We
then utilized an iterative, bottom-up, open coding process [10] to identify common usage scenarios, data leak
channels (e.g., text, code) and types of leaked information (e.g., PII, financial data) in sensitive prompts. Two
authors manually and independently coded up these prompts and then discussed them to agree on a selective
coding scheme. We notified developers about privacy concerns around the ShareGPT dataset by submitting a
pull request to the Hugging Face repository with locations and types of potentially sensitive data.
Results. We make the following key observations. First, users generally have limited awareness of the
potential privacy leaks that can occur during their interactions with ChatGPT. Despite individuals
tending to only share conversations they deem secure, they often inadvertently paste unprocessed text containing
sensitive information into ChatGPT without scrutiny, leading to implicit data leaks. For example, in Figure 2b,
an employee pastes meeting notes into ChatGPT, including a URL link that may potentially reference sensitive
documents. Appendix Figure 9 offers a detailed analysis of privacy risks across different tasks. Virtually all tasks,
precisely 24 out of 26, can potentially reveal personally identifiable information (PII).

Second, user prompts often encompass a wide range of privacy-sensitive information. Table 9 unveils
a wide array of privacy-sensitive information within ChatGPT prompts. We observe that specific scenarios are
prone to reveal rich privacy information, particularly those related to information extraction, writing assistance,
text analysis, and programming assistance. To illustrate, in Figure 2a, a user aims to extract housing details
from customers using ChatGPT, inadvertently revealing the homeowner’s email, location, and housing details.
Moreover, the open-vocabulary nature of prompts poses a challenge to exhaustively enumerate all patterns of
sensitive data. Traditional PII detection approaches based on a predefined taxonomy prove to be inadequate in
this case. Instead, we need an open-vocabulary policy to effectively address data leaks in user prompts.
Third, the identification of privacy-sensitive content in a text snippet heavily relies on the specific

context. For example, a customer’s name in Figure 2a may be identified as sensitive, while the project leader’s
name in Figure 2b is more likely to be considered public. Simple categorization of such information as names is
insufficient; fine-grained labels are necessary to distinguish them precisely within specific contexts. Moreover,
organizations establish their own privacy policies, and the determination of sensitive information is subject to
change. For example, the sensitivity of a company’s total employee number depends on its public accessibility.
Given the context-specific nature of sensitive information, there is no universally applicable solution to mitigate
privacy risks. Therefore, we use a PbE approach to help admins author fine-grained policies by annotating
examples of sensitive information in a specific context.
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User: You are an assistant that attempts to extract information from your user in a natural, friendly, and efficient manner on
behalf of a company that wants to buy the user’s home.
You are instructed to extract the following information from the user for the following:

1. The address of their home (key: address, type: string)
2. The number of bedrooms (key: num_bedrooms, type: number)
3. The number of bathrooms (key: num_bathrooms, type: number)
4. What other types of rooms they have in the house [example: kitchen, garage, etc.] (key: rooms, type: Array⟨room_name:

string⟩)
5. The condition of those rooms. (key: rooms, type: Array⟨room_name: string; condition: good, fair, poor⟩).

User: , San Francisco, CA, 3 bedrooms and the same number of bathrooms I have a kitchen,
a living room, and a two-car garage Everything is in good condition, except for the bedroom, the carpet is moldy

@gmail.com.

(a) Extracting housing details

User: hello my friend, I am a software engineer working as a consultant for a construction company. I need to write up a
proposal for work that has been discussed between me and the IT manager. He can then get approval for this work from
upper management. I will be supplying you with a bunch of information about the problem, solution, and time estimations
which I will ask to be written into a doc later in this convo. Sound good?
User: Ok here are some facts about the client which will be relevant later as we discuss logistics further:

• The companies name is (I may refer to them as when talking to you to shorten their
name) - They are a general contractor operating with offices in

• The company is - employees
• They are a company who manages multiple projects with different deadlines, budgets, owners, and needs. Any time
that can be saved will compound to faster project delivery and better quality assurance.

User: Now I am going to paste some notes the IT manager wrote. Dont worry if these dont make total sense to you. Just take
them as is - I know you will not be able to read the links so just ignore those and ill provide more context on those files:
Notes & Required Documents

• CA & NV have different new hires packets currently in BOX, Both compiled PDFs and additional documents are found
in this BOX folder:
– [New Hire Documentation (open link)] (https:// .box.com/s/ )

• Different in required documents between office new hire and field new hire
– These differences are shown on the checklist on Page 1-2 on the CA NEW HIRE PACKET

• is the lead updater/compiler for the CA new hire document

(b) Assisting writing proposal

Fig. 2. Examples of ChatGPT use cases with privacy leaks from ShareGPT dataset in two usage scenarios. We selectively
excerpt segments of user messages and redact the sensitive information within the conversation.

4 Programming Policies by Annotating Positive and Negative Examples
GPTWall allows admins to create policies by annotating positive and negative examples (Section 4.1). GPTWall
then automatically infers the policies (Section 4.2) and helps admins iterate policies with real-time feedback
(Section 4.3).
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A

B
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E

Fig. 3. The policy authoring interface of GPTWall. The admin starts by (A) identifying and (B) annotating sensitive information
in prompts. From these examples, GPTWall automatically generates policy suggestions. Next, the admin (C) selects a
suggestion and preview its effects. She (D) clicks the Checkmark button to finalize the policy. Afterward, the admin can (E)
view and edit the policy in an interactive policy viewer.

4.1 Annotating Data Leaks with Positive and Negative Examples
GPTWall allows admins to specify information disclosure policies by annotating the information they wish to
obfuscate and those they do not.
Input. The annotation process takes arbitrary text as the input, such as employees’ LLM prompts, financial
reports, meeting notes, and emails. GPTWall breaks them into paragraphs and instructs the edge LLM to annotate
all entities with fine-grained semantic labels (See Section 5.1). A diverse candidate pool will help admins quickly
identify good examples to create high-quality policies. During development, we randomly sampled 1,000 prompts
from a public prompt dataset, ShareGPT [35], as the input.
Annotating examples. Figure 3 illustrates the policy authoring interface of GPTWall. Imagine that the admin
wants to obscure information that could be used to identify individuals. As she reads through the prompt, she
identifies the birth year “1985” as potentially sensitive and marks it as a positive example. GPTWall then generates
a list of suggestions based on the annotated examples, such as “birth year” and “birth-related information.” Admins
can further annotate additional examples to refine the scope of the policy. For example, admins can specify the
information they do not want to obfuscate to avoid unnecessary modification. If the admin considers only the
birth year as sensitive, she can annotate all other years as negative examples.
Admins only need to manually annotate each type of example once, unless they wish to identify a negative

example to refine the policy. Annotating prompts with positive and negative examples enables the admin to
specify their intent with rich contextual information while simplifying the specification process.
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Inputs: A large corpus of entities and corresponding labels from user prompts.
Definitions:
• Let 𝑃 be a policy candidate list (i.e., specifications on information types), 𝐸 be the set of examples labeled by admins.
Define 𝑇 to be the number of rounds for bootstrapping.

Initialization:
• Create an empty policy candidate list 𝑃 = ∅, initialize the current policy 𝑝 = 𝐸.
Algorithm:
For 𝑡 = 1 to 𝑇 :

For each policy 𝑝 in the last iteration:
Filter corpus to find entities subject to the policy 𝑝 and update the entity set 𝑆 .
Extract the set of semantic labels 𝐿 of entity set 𝑆 .
Find the set of high-frequency keywords 𝐾 based on semantic labels.
For each possible keyword set in 𝐾 :
Update a new policy including all semantic labels with the keywords, excluding those of negative examples.
For uncovered or error examples in 𝐸, add it to the value whitelist or blacklist of the new policy.
Append the new policy to the policy candidate list 𝑃 .

Output: The policy candidate list 𝑃 .

Fig. 4. GPTWall’s synthesis algorithm for inferring policies from positive and negative examples.

4.2 Inferring Policies from Annotated Examples

Policy representation. Underlying the GPTWall interface is a structured policy language that allows the admin
to generalize obfuscation specifications across different prompts. GPTWall policy language consists of three
parameters: information type, context, and method.

• information type defines the sensitive information the policy targets, which supports two kinds of
specification: type-based (e.g., “personal name”) and value-based (e.g., “123-45-6789” for the SSN).

• context defines the applicable condition of the policy. For example, while a phone number may typically be
considered sensitive as PII, contact information used for business purposes (e.g., business phone and email)
may not be regarded as private in a workplace setting. GPTWall formulates context as the co-occurrence
with another information type in the same document.

• method determines how data is processed before being transmitted to the external service, such as mask
and anonymize.

Combined, we formulate our semi-structured information disclosure policy design as follows:
{ “method” : “mask | anonymize | replace | noisify | fuzzify”,
“information_type” : {“value”: {“sensitive”: <value list>, “non-sensitive”: <value list>},

“label”: {“sensitive”: <label list>, “non-sensitive”: <label list>} },
“context”: <context list> }

Policy inference. Given a set of annotated examples, GPTWall automatically generates a list of policies through
a snowball approach [36]. This process is initialized with the semantic labels of examples annotated by admins.
We then broaden the coverage by incorporating additional relevant semantic labels. We break down each semantic
label, such as “revenue_amount,” into keywords like “revenue” or “amount,” and identify keywords with high
frequency. These keywords can act as cues to identify the target data types, as they often appear in annotated
examples. If these keywords encompass additional semantic labels, we generate a new policy candidate that
covers all semantic labels containing these keywords. This approach represents each policy as a list of semantic
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A

B

C

Fig. 5. The policy iteration process of GPTWall. The admin can (A) click the suggestion to preview its effects on the example
prompts, (B) correct the false positive and (C) click the Update button to refine the policy.

labels linked to a set of keywords. Additionally, we include a blacklist containing all sensitive examples not
covered by the current policy. Figure 4 shows the pseudo code of the algorithm. At each round, for each policy
𝑝 in the candidate policy list 𝑃 , we follow these steps: (1) identify entities 𝑆 that are subject to the policy 𝑝 , (2)
extract the set of semantic labels 𝐿 of all entities in 𝑆 , (3) find high-frequency keywords sets 𝐾 and (4) generate
new policies based on the keywords and update the candidate policy list 𝑃 . We empirically limit the snowball
process to one round, as it is generally sufficient and additional rounds would result in too many false positives.
Specifying obfuscationmethod. After selecting policy suggestions, admins can specify the obfuscationmethods
for the policy. Since the appropriate obfuscation methods vary by contexts, we developed five types of obfuscation
methods to support common privacy-enhancing operations.

• Anonymize: deidentifies sensitive datawith its semantic label (e.g., changes “JohnDoe” to “<personal_name>”).
• Mask: redacts sensitive data with a placeholder character (e.g., changes “1234-5678” to “XXXX-XXXX”).
• Replace: substitutes sensitive data with an artificial value (e.g., changes “John Doe” to “Jane Smith”).
• Noisify: injects a configurable random noise into the numerical value (e.g., changes “$10,000” to “$12,000”).
• Fuzzify: obscures specific details (e.g., locations, ages, time) with a more general term (e.g., changes “28
years old” to “late 20s”).
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(a) Policy record (b) Visual preview

Fig. 6. Interface features of GPTWall. (a) GPTWall keeps all policies in an interactive record with natural language
descriptions. Admins can expand a policy to view or adjust its obfuscation method and contexts. (b) GPTWall
provides visual preview of the policy effects by highlighting changes between original and obfuscated prompts.
4.3 Iterating Policies with Real-time Feedback
GPTWall visualizes the effects of policy in real-time to help admins to validate and iteratively refine the policy.
Policy validation. GPTWall highlights the policy-affected fields in the current prompt for inline policy validation.
For example, in Figure 3, all locations in the prompt are marked with a red box. This allows for in-place validation
of the policy’s effectiveness on similar data fields and helps identify sensitive data not covered by existing policies.
GPTWall helps admins quickly assess policy impacts by visualizing how the policy affects various prompts.

Since sensitive information is often sparsely distributed across text [88], GPTWall displays all affected fields
across prompts to show policy effects. It also provides semantic labels for each data field and allows admins to
click on rows to view the complete prompt. This helps admins quickly evaluate policy coverage and false positive
rates to choose the best option from policy suggestions.
Policy iteration. After selecting a suggestion, admins can review the policy effects to identify false positives
and iteratively refine the policy (Figure 5). Admins can provide feedback by marking these fields as non-sensitive
and then updating the policy accordingly to exclude these false positive cases. Admins can repeat this feedback
loop until they feel satisfied with the quality of the policy.
We focus on two types of false positive errors: incorrectly included semantic labels and parsing error. We

address the first type of error by removing the semantic labels of false positive information from the policy if
there is no other positive examples with the same semantic labels. Otherwise, we add it to the whitelist of values.
For parsing error, we directly add the false positive to the whitelist.
GPTWall also allows admins to correct false positives of existing policies. Admins can enter edit mode by

hovering over the policy and clicking the Edit Icon, then mark the misclassified examples and click the Update
Icon to refine the policy. GPTWall keeps track of these annotated examples and adjusts the policy accordingly to
fix the errors and adapt to new prompts.

4.4 Debugging Support
GPTWall also provides other interface features to streamline the policy authoring process.
Natural language descriptions (Figure 6a). GPTWall generates natural language policy descriptions to make it
easier for the admin to review and refine the policy. For each policy, we can describe its data operations using
a four-element template: <method> <information type> [with <configured_property>] [when/unless <context>].
GPTWall only displays necessary parameters in the policy to provide a concise description. For example, instead
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of complete list of semantic labels, we only show high-level keywords for better understanding. We also exclude
undefined parameters to avoid redundancy in the description.
Policy record (Figure 6a). GPTWall incorporates each generated policy into an interactive policy viewer. Admins
can expand the description by clicking the arrow on the left to reveal hidden parameters and make edits. They
can also selectively enable and disable policies as needed. Additionally, GPTWall supports inline text annotation
for documenting the rationale behind each policy to aid in policy understanding and management.
Visual previews (Figure 6b). GPTWall provides visual previews to illustrate the effects of policies on sample
prompt. When admin activates the “show changes” button, GPTWall visualizes the differences between original
prompt and obfuscated prompt, marking prior values in red with a strike-through and current values in green.

5 Privacy-preserving Data Flow
This section presents GPTWall’s privacy-preserving data flow (Figure 7). Given a set of policies, GPTWall uses an
edge LLM to parses prompts, identify sensitive information and obfuscates the prompts before sending them to
the external LLM service. The edge model then restores the sensitive information in the responses to preserve
response quality.

5.1 Identifying Sensitive Information
We use an edge LLM to parse prompts and recognize key entities. We then check if each entity is covered by the
policies. If it’s not on the whitelist or blacklist, we assess the sensitivity based on its semantic label.
Traditional NER techniques rely on a predefined taxonomy and face two main challenges with detecting

sensitive data in prompts. First, expanding the predefined taxonomy to include additional data types is difficult,
leading to significant limitations in handling diverse sensitive data in real-world prompts. Second, broad categories
like person or location often fail to capture specific privacy-related information effectively. To address these chal-
lenges, we use an fine-grained open-vocabulary approach [8] to parse prompts (see prompt template in Appendix
B). We employ the edge LLM to label each entity with detailed semantic descriptions (e.g., “growth_rate” or
“personal_name”). We also incorporate privacy guidelines from the California Consumer Privacy Act (CCPA) [85]
to ensure the language model appropriately references these sensitive data types.

5.2 Obfuscating Prompts
The edge LLM generates replacement values for sensitive information and reconstructs the original prompts with
obfuscated values. Traditional PII anonymizers only allow the replacement of sensitive data with a predefined
value. However, this method lacks robustness and can be easily detected. Therefore, the edge LLM dynamically
generate plausible replacement values for each sensitive data field. To hinder adversaries from inferring the
authentic value through correlations, we generate multiple options with varying semantic similarities and employ
a randomized selection process. Specifically, we instruct the edge LLM to generate a list of potential replacements
and assign a score between 0 and 1 for each candidate to measure semantic similarity (see prompt template in
Appendix C). We then randomly select the options based on the scores, prioritizing options with higher semantic
similarity. To generate replacement candidates, we mask all sensitive information specified by the policy and
prompt the language model to predict appropriate values to fill in the masked positions. Inspired by differential
privacy mechanisms [21], we incorporate a parameter 𝜖 , into the random selection process. Admins can configure
the parameter 𝜖 to fine-tune the level of randomness in selection to balance between privacy and utility. The
overall process can be summarized as follows:
a. The edge LLM generates a set R of replacement values and assigns a score to each candidate based on semantic

similarity.
b. GPTWall selects the candidate 𝑟 ∈ R with probability proportional to exp(𝜖 · 𝑢 (𝑥, 𝑟 )).
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Please write a summary report 
from the meeting note below  
 ABC Company.
• Q4 production growth rate 

should be over  20% YoY.
• ……

replace(company_name)
noisify(percentage)
……

Please write a summary report 
from the meeting note below                         
 XYZ Company.
• Q4 production growth rate 

should be over  10% YoY.
• ……

Please write a summary report 
from the meeting note below 
ABC Company.
• Q4 production growth rate 

should be over 20% YoY.
• ……

 XYZ Company aims for 
Q4 production growth 
rate exceeding  10% 
YoY……

 ABC Company aims for 
Q4 production growth 
rate exceeding  20% 
YoY……

ABC Company aims for Q4 
production growth rate 
exceeding 20% YoY……

Policy

A B
C

DE
LLM

Fig. 7. Given a set of policies, GPTWall uses an edge LLM to (A) identify sensitive information in prompts, then (B) obfuscates
prompts before (C) sending them to the external LLM service. After (D) receiving responses, the edge LLM (E) restores the
information to preserve response quality.

Noisify utilizes the Bounded Laplace mechanism [34] to perturb numerical values, since Laplacian noise offers
strong local differential privacy guarantees [34, 63], and unbounded noise can lead to semantically implausible
edge cases (e.g., negative revenue amounts) [34, 63]. Admins can specify the range of perturbation by configuring
the properties of the policy. Fuzzify follows a similar process to the replace method, the only difference is that
we prompt the edge model to obscure details and generate a general term for sensitive data. We instruct the
edge LLM to reconstruct the original prompt instead of straightforward replacements, which may introduce
imperfections and inconsistencies [2].

5.3 Restoring Sensitive Information in LLM Responses
After obfuscating prompts, the edge model recovers sensitive information within the LLM responses to maintain
service quality (see prompt template in Appendix C). Formask and anonymize, we instruct the edge LLM to select
proper values to fill in the obfuscated field. For other methods, we reverse the obfuscation process by swapping
the original and modified values when reconstructing the prompts. For example, if we replace the growth rate
“20%” with “10%” within prompts, we restore the sensitive information by changing “10%” back to “20%” in the
responses (Figure 7). GPTWall maintains the mapping between the original and obfuscated information using a
local database storing pairs of original and obfuscated data.
Since LLM conversations can span multiple sessions, attackers may aggregate data from the same user over

time. To hindering attempts to infer sensitive information using statistical methods, we use a stateful approach to
maintain consistency across sessions. When selecting a replacement value for the information, we first query the
database to check for previous obfuscations and retains the obfuscated value if found to ensure consistency.
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6 Implementation
The GPTWall prototype comprises a policy authoring interface and an edge LLM service. We implemented
the policy authoring interface in React.js [57]. For pre-processing user prompts, we used Llama3-8B [56], a
lightweight open-source LLM to execute the privacy-preserving data flow.

To minimize performance overhead, GPTWall processes prompts while the user is typing. Instead of handling
the entire prompt at once, GPTWall breaks it into smaller chunks and processes them asynchronously for better
parallelism. Each chunk retains its full semantic meaning. For pre-processing, we keep a buffer of user input and
process each chunk as soon as the user finishes typing. We also generate replacement values in parallel to speed
up obfuscation. When the user sends the query, we aggregate the outputs to derive the obfuscated prompt. For
post-processing, we used the OpenAI Streaming API [74], which allows us to receive partial responses as they
become available. Similarly, we process each chunk as soon as we receive it and then aggregate the results to
generate the final response for the user. We empirically set the chunk size to one sentence or one line of text,
depending on which is smaller.

7 Evaluation
This section presents detailed experimental evaluations of GPTWall, including its parsing performance (Section
7.1), usability for admins (Section 7.2), effectiveness against attack (Section 7.3), impact on response quality
(Section 7.4), and system performance (Section 7.5).

7.1 Parsing Performance
We examined the effectiveness of edge LLMs in identifying sensitive information using a real-world dataset.
Dataset. We curated a dataset of sensitive user prompts from the ShareGPT dataset. Initially, we filtered out
prompts that were too long (> 4K tokens) or too short (< 10 tokens). From the filtered dataset, we randomly
selected 500 conversations and screened them for sensitive information, resulting in 89 potentially sensitive
conversations with a total of 1,218 user prompts. We followed CCPA [85] and HIPAA [72] guidelines to select
six types of sensitive information for evaluation (Table 1): age and birthdate (quasi-identifiers), personal name
and location (PII), and financial and health data (sensitive data). Two authors independently labeled the dataset
manually, cross-validated the labels, and resolved conflicts through discussion to agree on ground-truth labeling.
Method. We tested the efficacy of our approach with two popular lightweight open-source LLMs: Mixtral-8x7B
model [40] and Llama3-8B model [56]. First, we assessed the coverage of sensitive information by comparing
identified entities with ground-truth labeling, regardless of semantic labels. Next, we calculated the precision
and recall of semantic labels. Due to the open-vocabulary approach, each type of sensitive information may
consist of multiple semantic labels. We considered labels correct if their semantics are generally relevant to the
corresponding data type. For example, the label “heart_rate” could be reasonably associated with health data.
Likewise, in precision calculation, we accounted for all entities with related semantic labels.

We used Presidio [60], a widely-used PII detection SDK from Microsoft, as the baseline. We attempted to align
the six sensitive information types with Presidio’s pre-defined entity types for comparison. For example, personal
names may correspond to the PERSON entity type. However, since we could not match age with Presidio’s built-in
entity types, we manually created regex patterns based on patterns identified in the evaluation dataset. We also
included two baselines with simpler prompting strategies to further validate the effectiveness of our approach:
no fine-grained labels (NoFL) and no privacy domain knowledge (NoDK). In NoFL setting, we used general
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Metric Method Data Type
Name Location Birthdate Age Financial Health Average

Coverage

Mixtral-All 93.26% 91.46% 100.00% 98.41% 97.73% 88.50% 92.71%
Mixtral-NoFL 98.88% 72.56% 57.14% 96.83% 95.45% 89.38% 86.46%
Mixtral-NoDK 97.75% 76.22% 100.00% 100.00% 95.45% 99.12% 90.83%
Llama3-All 98.88% 83.54% 100.00% 98.41% 95.45% 95.58% 91.88%
Llama3-NoFL 98.88% 73.17% 57.14% 98.41% 97.73% 82.30% 85.42%
Llama3-NoDK 98.88% 85.37% 100.00% 98.41% 95.45% 98.23% 93.13%

Precision

Presidio 63.69% 74.45% 27.27% 93.02% 69.44% 56.52% 67.85%
Mixtral-All 69.23% 78.72% 85.71% 93.55% 88.54% 77.69% 78.63%
Mixtral-NoFL 86.43% 75.57% 30.00% 92.50% 44.68% 60.57% 72.08%
Mixtral-NoDK 83.07% 80.71% 100.00% 94.59% 72.84% 85.19% 82.95%
Llama3-All 85.01% 78.74% 100.00% 93.42% 65.63% 77.62% 81.02%
Llama3-NoFL 86.13% 78.37% 51.95% 91.36% 50.00% 81.03% 78.40%
Llama3-NoDK 88.40% 80.17% 100.00% 93.24% 64.89% 85.94% 83.85%

Recall

Presidio 86.52% 75.61% 100.00% 68.25% 63.64% 56.64% 70.02%
Mixtral-All 91.01% 83.54% 100.00% 98.41% 93.18% 85.84% 88.54%
Mixtral-NoFL 93.26% 69.51% 57.14% 96.83% 95.45% 82.30% 82.71%
Mixtral-NoDK 92.13% 68.90% 57.14% 100.00% 95.45% 92.04% 85.00%
Llama3-All 94.38% 79.88% 57.14% 98.41% 95.45% 90.27% 88.54%
Llama3-NoFL 92.13% 68.90% 57.14% 95.24% 97.73% 74.34% 80.42%
Llama3-NoDK 94.38% 83.54% 42.86% 96.83% 95.45% 92.04% 89.79%

F1 score

Presidio 68.25% 75.03% 42.85% 78.73% 66.41% 56.58% 68.92%
Mixtral-All 78.64% 81.06% 92.31% 95.92% 90.80% 81.56% 83.29%
Mixtral-NoFL 89.72% 72.41% 39.34% 94.62% 60.87% 69.78% 77.03%
Mixtral-NoDK 87.37% 74.34% 72.72% 97.22% 82.63% 88.48% 83.96%
Llama3-All 89.45% 79.31% 72.72% 95.85% 77.78% 83.47% 84.61%
Llama3-NoFL 89.03% 73.33% 54.42% 93.26% 66.15% 77.54% 79.40%
Llama3-NoDK 91.29% 81.82% 60.00% 95.00% 77.26% 88.89% 86.72%

Table 1. Microbenchmark results for parsing. We assessed the performance of GPTWall and Presidio in identifying six types
of sensitive information across 1,218 ChatGPT prompts. GPTWall achieves higher precision and recall compared to Presidio
across all types of information.

categories instead of fine-grained labels for each entity. In NoDK setting, we excluded the privacy guidelines on
sensitive information when prompting the LLMs.
Results. Table 1 presents the parsing performance for different types of sensitive information. Both models
achieved over 92% coverage and an F1 score above 83%, significantly outperforming Presidio with an F1 score of
68.92%. Notably, Mixtral-All demonstrated higher recall (average of 88.54% v.s. 70.02%) and precision (average
of 78.63% v.s. 67.85%) than Presidio across all types of sensitive information. For types not natively supported
by Presidio, the edge LLM significantly increased the F1 score from 10% to 30% on both models. For Presidio’s
built-in types (i.e., Name and Location), the edge LLM also exhibited an increase of over 4% in F1 score. Our
results show that edge LLMs achieved better performance than Presidio in identifying sensitive information,
particularly for out-of-vocabulary data types

We compared the parsing performance of different prompting strategies. The NoFL setting showed over a 5%
drop in coverage, recall, and F1 score, and around a 3% drop in precision compared to the original setting on
both models. The results indicates that fine-grained labels can provide more accurate specifications and better
coverage of sensitive information. Conversely, the NoDK setting generally showed higher precision and recall
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Category Error Type Description Example

Identification
Error

Missing
Entity

An entity containing sensitive in-
formation that is not identified.

[Jack Smith: personal_name] is a 42-year-old patient
being evaluated for involuntary movements.

Inaccurate
Entity

Boundary

Entity identification that is incom-
plete or includes words or phrases
that do not belong to the entity.

A [74-year-old woman: age_gender] is brought to the
physician by her husband because of [difficulty sleep-
ing: symptom] for [several years: duration_time].

Dummy
Entity

An entity with no actual informa-
tion or only dummy data.

My [home address: address] is [7320 Norval Lodge Suite
243: address].

Label
Error

Incorrect
Label

Label that does not match seman-
tics of the entity.

AB is the average number of guests, and [BC: location]
is the actual cost that is paid by the guest...

Ambiguous
Label

Label that is unclear or lacks speci-
ficity.

Pretend you are a [Workday: name] user and you are
the HR CEO of a large company...

Format
Error

Incorrect
Format

Parsing result that does not meet
the specified format.

They had two children Alice: personal_name age [12:
age] and Bob: personal_name age [14: age].

Inconsistent
Entity

Entity altered from its original form
in user’s prompt.

[Tom: personal_name] has a joint savings account with
[$200,000: saving_amount]. (Original form: 200,000 USD)

Table 2. The codebook of parsing errors. We highlight the parsing errors with italic format in the examples.

than the original method, suggesting that privacy guidelines may not be necessary since most LLMs are already
trained to align with human values [75, 77, 93, 95].

We also performed error coding to pinpoint areas for improvement. Two coders independently examined the
parsing results of Mixtral-All and developed a codebook of parsing errors (Table 2). The majority of errors we
found were identification errors, including Missing Entity (𝑛 = 28), Dummy Entity without actual information
(𝑛 = 26), and Inaccurate Entity Boundary (𝑛 = 4). In addition, we noted two types of label errors: Incorrect Labels
(𝑛 = 6) and Ambiguous Labels lacking specific details (𝑛 = 15). We also observed format errors, such as Incorrect
Format with missing brackets or incorrect colon positions (𝑛 = 2) and Inconsistent Entities altering from the
original text (𝑛 = 3). These findings outline the imperfections of current language models for open-vocabulary
parsing. With recent rapid advancements in LLMs [3, 37, 39, 62, 86], we anticipate future open-source LLMs to
rectify these issues and continually improve the parsing performance.

7.2 Policy Usability for Admins
We conducted an IRB-approved user study to evaluate how GPTWall could assist administrators in creating
policies for governing data leaks in users’ prompts. Specifically, we evaluated the usability of GPTWall primarily
from two aspects:

• Does GPTWall streamline the process of creating policies that govern sensitive information in user prompts
for admins?

• Does GPTWall help admins to craft more effective policies for diverse types of sensitive information?

Method. We recruited 12 undergraduate and graduate students (3 identified as female, 9 identified as male, aged
18-26) as participants. All participants have at least 3 years of programming experience (Mean=5.36, SD=2.33)
and are familiar with current PII detection methods, including regex-based pattern matching and named entity
recognition techniques. Each participant received compensation of 20 USD for their time.
The study was a within-subjects design, where participants used both GPTWall and Presidio to complete six

tasks detecting specific types of sensitive information: A: age, B: personal name, C: health data, D: birth date, E:
location, F: financial figures. We grouped them into three pairs, each representing a kind of sensitive information
with similar difficulty levels: (A, D), (B, E), and (C, F). We presented these tasks in two orders: (A, B, C); (D, E,
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Task Presidio GPTWall
Time (min) #Rule #Success Precision Recall Time (min) #Policy #Success Precision Recall

Name 4.49±2.94 1.0 6 63.69% 86.52% 10.50±4.00 4.0 6 77.41% 87.80%
Location 12.80±7.23 1.4 3 67.78% 35.88% 12.52±7.82 3.8 5 82.98% 68.29%
Birthdate 11.72±5.75 1.7 2 49.71% 55.10% 7.52±4.93 2.7 5 98.33% 97.57%
Age 12.21±7.76 2.4 3 73.71% 36.83% 4.38±3.32 1.2 6 93.73% 97.95%
Financial 9.25±4.22 2.0 3 37.79% 54.55% 12.35±6.08 11.3 6 52.37% 85.98%
Health 13.22±7.86 4.4 5 50.12% 63.89% 9.21±1.50 12.2 6 83.88% 61.19%
Average 10.61±6.54 2.1 3.7 54.60% 53.98% 9.42±5.48 5.9 5.7 83.91% 76.17%

Table 3. The results of task completion in the user study. Our results show that participants spent less time and completed
more tasks successfully using GPTWall compared to Presidio. Participants achieved significantly higher precision and recall
using GPTWall than the baseline.

F) or (D, E, F); (A, B, C). Participants were instructed to complete each task set under a different condition. We
counterbalanced the presentation order of task sets, as well as the order of the conditions, among all participants.

For each task, we provided participants with 10 sample prompts. We asked participants to read through these
prompts and detect the specified type of sensitive information using GPTWall or Presidio. Participants were
instructed to preview the detection results and refine iteratively to improve precision and comprehensiveness. We
imposed a 20-minute limit per task to prevent participants from getting caught up on a single task. However, we
instructed participants to inform the researcher if they felt unable to further improve the detection performance.

For the control condition, we developed a Jupyter Notebook interface based on the Presidio tutorial [60]. We
provided a section for implementing sensitive information detectors, along with an analysis tool to visualize the
detection results. Given the complexity of regular expressions [59], participants could use internet searches and
AI tools such as ChatGPT for assistance.

Our study took about 90 minutes for each participant, including two 45-minute sessions. In each session, we
started with a 10-minute walk-through briefing on the tasks and study purpose, along with a tutorial on the
tool. Then we instructed participants to complete the assigned tasks. At the end of each session, we asked the
participant to complete a questionnaire and take a semi-structured interview about their experiences in the
session. In the survey, participants filled out a System Usability Scale (SUS) test [12] and a usability questionnaire
covering four usability characteristics: ease of use, learnability, expressiveness, and satisfaction [22]. For each
characteristic, we presented a statement related to each condition’s characteristics and asked the participants to
rate on a 5-point Likert scale from 1 (strongly disagree) to 5 (strongly agree). For example, ease of use refers to
the statement, “I thought it was easy to complete the tasks with GPTWall.” Learnability refers to “I think that
Presidio is easy to learn.” The study was conducted in a lab space or over a Zoom meeting.
Results. Table 3 shows task completion results of GPTWall and Presidio. We measured each participant’s time to
complete each task and calculated the average time required to create a policy or rule. Participants completed
tasks faster (average of 9.42 v.s. 10.61 minutes) and created more policies or rules (average of 17.7 v.s. 6.3 for all
tasks) using GPTWall than Presidio. On average, participants spent less time (1.59 v.s. 5.0 minutes) to create a
single policy when using GPTWall compared to the baseline, which was statistically significant (p < 0.01) under
the Mann-Whitney U test [54]. These results suggest that GPTWall simplifies the policy creation process and
helps admins manage sensitive information more efficiently.

We compared the effectiveness of policies with and without using GPTWall. We considered a task successful if
the participant could detect all sensitive information in at least 80% of sample prompts. On average, participants
completed more tasks successfully (5.7 v.s. 3.7) using GPTWall than the baseline, indicating that GPTWall enables
admins to regulate identified sensitive information more effectively. Furthermore, we evaluated the quality of
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the policies by comparing the participant detection outcomes with the ground-truth labels from the previous
evaluation of parsing performance (Section 7.1). We calculated precision and recall for each type of sensitive
information under each condition. Overall, participants using GPTWall achieved significantly higher precision
(average of 83.91% v.s. 54.60%, p < 0.05) and recall (average of 76.17% v.s. 53.98%, p < 0.05) in nearly all tasks, with a
29% increase in precision and a 22% increase in recall compared to the baseline. Our results indicate that GPTWall
assists admins to craft more precise and comprehensive policies across various types of sensitive information.
Table 4 shows the usability results for GPTWall and Presidio. On average, GPTWall achieved a significantly

higher SUS score than the baseline (81.46 v.s. 28.54, p < 0.01) based on Wilcoxon Signed rank test [94]. The
Mann-Whitney U test showed statistically significant effects in ease of use, learnability, expressiveness and
satisfaction (p < 0.01). These results suggest that GPTWall can simplify policy creation process, reduce learning
costs, and improve versatility in handling diverse sensitive information.

Ease of use Learnability Expressiveness Satisfaction

Presidio Median 2 1.5 4 2
IQR 1.75-2 1-2 2-4 1.75-2.25

GPTWall Median 4.5* 4.5* 5* 5*
IQR 4-5 4-5 4-5 4-5

Table 4. Subjective feedback collected from the post-study questionnaire in the user study. Each participant was asked to
rate for each usability characteristic on a Likert scale of 1 to 5. We compared the ratings of GPTWall and Presidio with a
two-tailed Mann-Whitney U test. The results show that GPTWall outperforms the baseline in four usability aspects with
statistical significance (*) with all p-values < 0.001.

Qualitative findings. We present the major qualitative findings from the observation of participants behaviors
as well as their feedback from the post-study interviews below.

First, all participants mentioned that GPTWall was much easier to use and saved them a lot of effort compared
to the baseline method, echoing the usability results in Table 4. They felt the policy authoring interface was
“user-friendly and straightforward” (P9) and “convenient to use” (P10). Some participants (4/12) were impressed by
GPTWall’s functionality: “It’s like magic! It can automatically recognize sensitive information with only a few exam-
ples” (P11), and “I’m surprised by how effortless it is to create policies with just a few clicks” (P1). Thus, participants
unanimously preferred to create policies by annotating a few examples rather than manual programming: “I can
detect a lot of sensitive information without writing a single line of code. That’s fantastic!” (P5). Meanwhile, many
participants (8/12) mentioned that GPTWall “was easy to learn” (P1) and “did not require extra knowledge” (P11).
They also saw how GPTWall could potentially make the management of private information more accessible to
laypeople. As P8 noted, “I couldn’t imagine how my grandma managing her personal info[rmation] with regex. But
now, [with GPTWall,] it seems like it could actually be possible.”
Second, participants appeared to appreciate the visualization of the policy effects and support for iteration

by GPTWall. They thought that the visualization was helpful for the iterative process by providing real-time
feedback: “The mark is noticeable — I can easily see which information was detected and which wasn’t when creating
policies” (P6), and “The process flows well — With each click, it directly displays the results of my actions. If I notice
something wrong, I can simply click to make modifications” (P4). Participants also valued the feature to iterate on
identified errors: “Whenever I find a bad case, I can just iterate on it - that’s the best feature I love” (P3). On the
other hand, we observed that participants struggled with iterating on detection results in the baseline, even with
the assistance of AI tools. Many participants expressed that they “had no clue how to tweak regular expressions to
cover new sensitive info[rmation]” (P9). P2 reflected on his experience refining regular expressions and said that,
“I tried messing with these regex to catch new patterns, but it didn’t work. After a few tries, it actually made stuff
worse, so I went back to how it was. In the end, I just gave up.”
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Lastly, nearly all participants (11/12) perceived GPTWall to be more generalizable and expressed greater
satisfaction with its detection results. P12 remarked that “[GPTWall makes] a big progress compared to the baseline,
both in accuracy and generalizability.” We noticed a shift in participants’ behavior patterns during the review
process of sample prompts. Initially, they carefully read prompts to identify sensitive information and create
policies. As policies evolved and expanded, they mainly skimmed the prompts to validate detection results. We
further corroborated this observation with their reflections, such as “At first, I checked each prompt carefully to
avoid missing any sensitive info[rmation]. But after seeing it catch everything in a few prompts, I started trusting its
detections and just verified the results” (P9). However, several participants (3/12) also noted that GPTWall might
cause confusion when “some similar info[rmation] failed to be detected” (P6) due to parsing errors, suggesting that
future versions of GPTWall should explore more robust solutions for corner cases.

In the post-study interview, some participants (4/12) expressed the willingness to have GPTWall integrated as
a web extension for their daily use. P11 even stated that “hope to put it into market as soon as possible!” Despite
encountering a few bugs in our research prototype during the study, their enthusiasm indicates the potential
value that our system holds for our participants.

7.3 Effectiveness against Attack
We evaluated the effectiveness of using edge LLM to reduce the risks of inferring sensitive information.
Method. We evaluated GPTWall’s effectiveness against inference attacks using state-of-the-art LLMs due to its
efficiency in accurately infer a wide range of sensitive attributes from the text [84]. Specifically, we followed Staab
et al. [84] to prompt GPT-4 (model gpt-4-0125-preview) to deduce sensitive information from prompts and
give its top-3 guesses (see prompt template in Appendix D). For text, we considered a guess correct if conveying
the same meaning as the ground-truth. For numerical data, we accepted guesses with less than 10% error. If the
ground truth and the guess are ranges, we required a minimum overlap percentage of 80%. We measured the
top-1 and top-3 accuracy of GPT-4 model guesses for five methods (mask, anonymize, replace, noisify, and fuzzify)
across various settings.
Setup. We first conducted a preliminary experiment to understand the effectiveness of obfuscation methods
for common usage scenarios. We curated a small-scale dataset including 9 real-world ChatGPT prompts from
the ShareGPT dataset. These prompts span a broad array of contexts, including university environment, large
corporations and small teams scenarios. Table 5 shows each prompt’s usage scenario and related sensitive data
type. For each prompt, we identified at least five pieces of sensitive information, for a total of 52, including 29
text and 23 numerical information. Two authors crafted descriptions for each piece of sensitive information and
cross-validated to ensure the descriptions accurately and uniquely represent the information in the prompt. For
mask and anonymize, we directly generated 10 obfuscated prompts. For other methods, we experimented with
𝜖 = 0.1, 0.5, 2 and generated 10 obfuscated prompts for each applicable prompt.

We then used the dataset in Section 7.1 to quantitatively evaluate the performance of obfuscation methods
against inference attacks. We instructed GPT-4 to provide descriptions for sensitive information in prompts and
and manually checked and corrected any inaccurate annotations to ensure precision and specificity.
Results. Table 6a shows the evaluation results on the sample dataset. The mask and anonymize methods reduced
the accuracy of GPT-4 top-3 guesses from 98.1% to 21.2% and 19.2% respectively. When 𝜖 = 0.5, the replace, noisify
and fuzzify methods decreased the top-3 accuracy from 96.6%, 100%, 98.1% to 34.5%, 30.4% and 30.8% respectively.
For these methods, the top-3 accuracy decreased with higher randomness (smaller 𝜖). Specifically, the noisify
method droped by over 40% from 𝜖 = 2 to 𝜖 = 0.1, while the replace and fuzzify methods decreased by around
10%. Therefore, we used 𝜖 = 0.1 for the larger-scale experiment.

We qualitatively analyzed the effectiveness for different types of sensitive information by manually examining
the obfuscated prompts. While mask and anonymize apply to all data types, they work best for information
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#ID Usage Scenario Description Sensitive Information Type

1 Writing email responses Draft an email to explore collaboration with a
large company based on provided chat history

Email address, Personal name,
Working experience

2 Summarizing financial data Summarize the consumer electronics market data
across various market segments

Sales volume, Revenue figures,
Market value projections

3 Submission review Review a submission, pinpointing the main issues
of this paper and suggesting improvements

Name, Homepage URL,
Intellectual property

4 Crafting weekly report Write a weekly report to summarize the work
during the first week of training

Professional position and duty,
Product details

5 Resume assessment
Outline how the candidate can make valuable
contributions to specific fields based on his/her
past experience information in resume

Employment history and roles,
Revenue figures

6 Project questionnaire Simulate the role of an authoritative figure and
respond in their manner and tone

Personal age and race, Project
information

7 Personal assistant Act as a personal assistant to recall provided
information and offer decision-making advice

Employment history, Project
details, Financial information

8 Data analysis Extract informative statistics and source business
insights from a bunch of data

Main business, Location,
Registration time

9 Business consultant Serve as a specialized business consultant to
provide advice based on investment data

Financial information, Personal
background, Future plans

Table 5. The description of prompts used in the preliminary studies and corresponding sensitive data types.

Original Mask Anon. Replace Noisify Fuzzify
All Text Numeric 𝜖 = 0.1 0.5 2 𝜖 = 0.1 0.5 2 𝜖 = 0.1 0.5 2

Top-1 (%) 98.08 96.55 100.00 11.54 11.54 24.14 31.03 31.03 4.35 21.74 43.48 17.31 17.31 28.85
Top-3 (%) 98.08 96.55 100.00 21.15 19.23 31.03 34.48 41.38 13.04 30.43 56.52 28.85 30.77 40.38

(a) Sample dataset

Method Metric Data Type
Name Location Birthdate Age Financial Health Average

Original Top-1 (%) 93.16 88.97 80.00 76.19 94.00 100.00 91.56
Top-3 (%) 94.44 92.41 100.00 85.71 94.00 100.00 93.94

Mask Top-1 (%) 21.37 32.41 21.43 20.00 24.00 21.74 24.59
Top-3 (%) 25.21 40.00 45.24 20.00 48.00 37.68 34.31

Anonymize Top-1 (%) 14.53 24.83 16.67 20.00 24.00 30.43 20.37
Top-3 (%) 28.21 31.72 45.24 20.00 50.00 43.48 34.31

Replace Top-1 (%) 11.53 44.14 20.00 − − − 23.96
Top-3 (%) 14.53 54.48 20.00 − − − 29.69

Noisify Top-1 (%) − − − 26.19 22.00 28.99 26.09
Top-3 (%) − − − 38.10 32.00 44.93 39.13

Fuzzify Top-1 (%) 15.38 46.21 50.00 40.00 50.00 36.23 32.29
Top-3 (%) 22.65 57.24 71.43 40.00 64.00 57.97 44.04

(b) Large dataset

Table 6. Accuracy of GPT-4 inference attacks for original and obfuscated prompts. GPTWall significantly mitigates the risks
of inferring sensitive information from users’ prompts.
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with weak context correlation and fixed forms, like timestamps and code names. Otherwise, LLMs may infer the
obfuscated fields from the context [38, 84] or it might omit sensitive data in other forms [49], such as personal
names in emails. The replace method is ideal for text data highly correlated with context, such as personal
background and employment history, as it can modify relevant nuances in prompts. Noisify is most effective
for numerical data like financial information. Fuzzify works well for sensitive information with approximate
expressions, like “40s” for ages, but not for precise figures.
Table 6b shows the accuracy of GPT-4 inference attack on original and obfuscated prompts. The attack

achieved 94% top-3 accuracy on original prompts, while the obfuscation methods reduced accuracy to: mask
(34%), anonymize (34%), replace (30%), noisify (39%), and fuzzify (44%). These results indicate that GPTWall
can significantly reduce the risk of LLM inference attacks. Further, we observed different types of sensitive
information are best handled by different obfuscation methods. Specifically, the most effective methods for
each type of sensitive data are: replace for names, anonymize for locations, anonymize/mask for ages, noisify
for financial information, and mask for health information. This suggests that combining multiple obfuscation
methods can protect various types of sensitive information more effectively.

7.4 Impact on ResponseQuality
We assessed GPTWall’s impact on service quality by employing the GPT-4 model to evaluate the quality of
responses to the obfuscated prompts.
Method. We used automated ratings by GPT-4 to measure the response quality of ChatGPT. Note that this
approach is becoming increasingly common for evaluation [16, 45, 50, 64, 91] and achieves accuracy that matches
or surpasses human evaluation on various tasks [15, 16, 50, 101]. We employed a method similar to LLM-as-
a-judge [101] and instructed the GPT-4 model (gpt-4o-2024-05-13) to comprehensively assess the response
quality across 10 dimensions, such as helpfulness, relevance, and completeness. Each dimension was rated on a
scale from 1 to 5, adding up to 50 points. We then doubled the scores to scale the final score to 100. We provided
GPT-4 with the input prompt, the corresponding ChatGPT response, and the original response from the ShareGPT
dataset as references (see the prompt template in Appendix E). For each original (unobfuscated) or obfuscated
prompt, we queried ChatGPT (gpt-3.5-turbo-0125) to retrieve the responses and then assessed the GPT-4
evaluation scores for these responses with and without restoring the sensitive information.

We used a similar experiment setup as in Section 7.3. We first conducted a small-scale study to supplement the
GPT-4 judge scores with human evaluation results. We created a human evaluation guideline for LLM response
quality based on principles from [79], using the same evaluation rubrics as the GPT-4 judge. Following the
guideline, two authors collaboratively rated ChatGPT’s responses to original and obfuscated prompts from
the sample dataset in Section 7.3. Next, we used the dataset from Section 7.1 to assess the impact of different
obfuscation methods on response quality. We tested with 𝜖 = 0.1 to remain consistent with Section 7.3.
Results. Table 7a shows the GPT-4 Judge scores and human evaluation results on the sample dataset. Responses to
the original prompts received a GPT-4 score of 81.1, with responses using different obfuscation methods ranging
from 70.7 to 75.7 without restoration and from 71.3 to 80.4 with restoration (considering the best score among
different 𝜖 values). In human evaluation, the original prompts scored 87.7, with obfuscated responses ranging
from 82.3 to 85.8 without restoration and from 82.8 to 86.8 with restoration. Generally, restoration improves
the evaluation scores in both GPT-4 and human assessments. The differences in response quality between the
original and obfuscated prompts appeared to be smaller in human evaluations compared to GPT-4 scores.
Table 7b presents the evaluation results for the larger-scale dataset. The original prompts obtained a GPT-4

score of 80.1, while obfuscated prompts scored between 69.9 and 73.1 without restoration and between 68.9 and
75.2 with restoration. Our results suggest that GPTWall maintains relatively high response quality compared to
the original responses. On average, restoring sensitive information increased the quality scores for replace, noisify
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and fuzzify, though the differences were not statistically significant. However, restoration degraded response
quality for mask and anonymize. This might because these methods make restoration more complex and may
lead to inconsistencies if the recovery is inaccurate. Among all obfuscation methods, mask performs best without
restoration, while replace and noisify preserves better response quality when sensitive information is restored.

Metric Condition Original Mask Anon. Replace Noisify Fuzzify
𝜖 = 0.1 0.5 2 𝜖 = 0.1 0.5 2 𝜖 = 0.1 0.5 2

GPT-4 Judge Raw 81.1 75.1 75.7 70.7 66.9 69.1 68.0 76.8 65.2 70.2 71.3 69.6
Restored 77.3 78.0 70.2 74.4 80.0 73.2 80.4 64.4 70.4 71.3 70.0

Human
Evaluation

Raw 87.7 82.3 84.0 83.3 83.3 85.8 84.5 83.5 81.5 80.5 84.3 84.0
Restored 82.8 84.5 83.8 84.0 86.8 85.5 84.5 82.5 82.0 86.0 83.3

(a) Sample dataset

Metric Original Mask Anonymize Replace Noisify Fuzzify
Raw Restored Raw Restored Raw Restored Raw Restored Raw Restored

GPT-4 Judge 80.1 73.1 69.4 70.4 68.9 73.3 75.2 71.9 74.6 69.9 70.2
(b) Large dataset

Table 7. Evaluation results of the ChatGPT response quality before and after restoring sensitive information.

7.5 System Performance
We measured GPTWall’s performance overheads across various LLM usage scenarios.
Method. Since GPTWall processes prompts on the fly while users input them, we measured the end-to-end
performance by examining the total time from the start of user input to the completion of response generation.
With GPTWall enabled, We recorded the time for pre-processing tasks (user typing, parsing and obfuscation)
and for response generation and restoration. When GPTWall is disabled, we measured the user typing time and
ChatGPT’s response time. We calculated the typing time by counting the number of words entered by the user,
assuming an average typing speed of 40 words per minute [44].
To evaluate GPTWall’s performance across different LLM usage scenarios, we experimented with prompts

from each common workplace scenario in Appendix Table 8. We divided these scenarios into two categories:
interactive v.s. non-interactive (Figure 8). In interactive scenarios, users actively engage with ChatGPT and type
out most or all of their prompts, such as arranging travel plans. In non-interactive scenarios, users typically
paste large amounts of information and interact with ChatGPT intermittently, such as analyzing financial data.
For interactive scenarios, we counted all words in the prompts when calculating typing time. In non-interactive
scenarios, we excluded words in the pasted data. We also treated the pasted data as a single chunk since it’s pasted
all at once. We ran experiments using the Llama3-8B model [56] on an Nvidia A100 (80G) GPU and reported the
average time cost of 10 repetitions.
Results. Figure 8 shows the performance overheads of GPTWall across various workplace use scenarios. The
relative performance overheads are as follows: query (11%), writing assistance (8%), recommendation (2%),
automation (1%), data analysis (29%), test analysis (13%), material classification (187%), programming assistance
(21%), and information extraction (12%). Our results indicate that GPTWall introduces modest overheads in most
scenarios, especially for interactive scenarios such as recommendation and automation. However, overheads
can be quite high for some non-interactive tasks (e.g., material classification). For tasks with relaxed latency
requirements and high throughput, handling them asynchronously or in batch can mitigate the impact of these
overheads. In general, the overheads are dominated by the pre-processing time, with the major overhead occurring
during obfuscation. We discuss future directions to reduce the performance overheads in Section 9.
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Interactive Non-interactive

Fig. 8. End-to-end performance of GPTWall in typical workplace use scenarios. GPTWall incurs only modest
performance overheads in most cases.

8 Discussion & Limitations

Scope of use cases. Through the analysis of 50K conversations collected from ShareGPT (Section 3), We identified
9 common scenarios (e.g., writing assistance, text analysis) and 26 tasks (see Appendix Table 8), as well as 4
common data leak channels (query, text, code, tabular data) and 10 categories of leaked data (see Appendix
Table 9). We used best practices in API design [9] to guide the design of GPTWall. We started with a few use
cases, tested them using our initial policy representation, and iterated on the representation as we expanded the
supported use cases. We found GPTWall can support most use cases that we outline above.

At the core of GPTWall’s expressiveness is the design of the underlying policy representation. We found that
nearly all the use cases in our dataset can be governed by three types of policies: “type-based” (e.g., “personal
name”), “value-based” (e.g., “123-45-6789” for the SSN), and “context-based” (e.g., when “personal name” type
information coexists with health data in the same document).
However, this representation may not be complete, and we design it to be extensible. For example, a specific

use case may require a “value-pattern-based” policy, e.g., only telephone numbers starting with a certain prefix
are sensitive. In that case, we can extend the “information type” in the policy representations with “value-pattern-
based” policies and update the policy synthesis algorithms.
What data should be obfuscated? Admins must consider the potential LLM operations to determine which
data should be obfuscated. For instance, universities may want to safeguard students’ names and associated
grades from being transmitted to external services. The admin may create policies to obfuscate either the grades
or the names. However, obfuscating the grades may prevent the LLM from performing arithmetic computations,
such as asking ChatGPT to compute the average score.
Bridging edge LLMs and proprietary LLM services. LLMs are eager for deployment on edge devices for
increased privacy and control [98]. Past works have made remarkable progress towards the fast and energy-
efficient on-device inference of LLMs [55, 80, 82, 96, 98]. For example, recently, Apple introduced OpenELM,
which includes several LLMs that are small enough to run directly on a smartphone [55]. However, on-device
LLMs tend to exhibit lower performance due to the limited processing power and memory of edge devices [96, 98]
and may consume much energy for resource-intensive tasks [82]. Alternatively, we propose a new primitive
that enables the utilization of resource-intensive LLM service while mitigating privacy risks by employing the
on-device LLM for pre- and post-processing.
Potential application domains. While we design GPTWall to govern data leaks in LLM prompts, GPTWall can
also be adapted for diverse text content. For example, organizations can utilize it to identify sensitive data in
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documents, akin to traditional PII detection techniques. Additionally, it can function as an email filter to block
emails containing sensitive data, similar to Exchange mail flow rules [61]. Compared to conventional methods
relying on pattern matching and closed-vocabulary NER, our system can capture nuanced privacy contexts in an
open-vocabulary setting and has the potential to address a broader range of privacy leaks in real-world scenarios.

9 Future Work

Improving parsing performance. While the edge LLM identifies sensitive information more accurately than
traditional methods, parsing errors including missing entities and incorrect semantic types can lead to the
omission of privacy-sensitive data and degrading the policy quality. Various approaches can enhance parsing
performance, including fine-tuning models on domain-specific datasets, refining prompt design with reflection
and self-correction, and combining traditional NLP techniques with LLM annotation results. Additionally, creating
a privacy graph specialized for sensitive information, similar to FORGE [13], could further improve performance.
Expanding privacy-enhancing techniques. The system prototype currently supports basic obfuscation
methods for text data, which serve as initial steps towards protecting the sensitive information in users’ prompts.
Future work can expand the scope of supported data operations to enable administrators to customize privacy
measures to their needs. For example, integrating additional techniques such as hashing and tokenization could
replace sensitive information with less sensitive values while preserving identifiability. Furthermore, combining
these techniques with differential privacy methods [21] would provide robust privacy guarantees.
Optimizing performance overhead.While the performance overhead incurred by GPTWall is acceptable in
most scenarios, our system becomes less efficient with prompts containing large amounts of text. Recent works
have made significant advances on accelerating LLM inference speed without sacrificing output quality [25, 48,
51, 83] and efficient LLM on edge devices [5, 96–98, 100]. Parallel token generation can also speed up output
decoding and improve generation speed [46]. Integrating these techniques into our system can help optimize the
response latency. Future work could also explore using structured LLM programs to execute the data processing
flows more efficiently with better parallelism control [102].

10 Conclusion
This paper presents GPTWall, a policy-based system that helps administrators manage open-vocabulary data
leaks when integrating external LLM services into the workplace. We use a mixed-methods approach to analyze
a real-world dataset of ChatGPT conversations to investigate privacy leaks in large language model prompts.
Based on the insights from our analysis, we design GPTWall, which allows employees to use external LLM
services while significantly mitigating the risks of data leaks. GPTWall comprises two key components: (1) a
policy authoring interface for customizing policies through programming by example; (2) an edge LLM that
enforces privacy-preserving data flow based on the policies. Our experiments and user studies demonstrate its
usability, effectiveness and impact on service quality.
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A The Pilot Study on Privacy Leaks in the ShareGPT Dataset

Scenario #ID Task Description
I Query #1 Arranging travel plans
II Writing assistance #2 Content marketing and copywriting

#3 Creating structured outlines and reports
#4 Writing email responses
#5 Polishing resume and cover letter
#6 Drafting and reviewing legal documents
#7 Editing, formatting and proofreading
#8 Crafting user guides and documentation

III Data analysis #9 Analyzing business trends
IV Text analysis #10 Personal Tutoring

#11 Document-based question answering
#12 Synthesizing a summary
#13 Language translation
#14 Analyzing customers’ feedback
#15 Detecting errors and anomalies

V Material classification #16 Categorizing emails
VI Programming assistance #17 Debugging code and error information

#18 Generating code for software applications
#19 Interpreting and analyzing code
#20 Optimizing code efficiency

VII Information extraction #21 Sourcing business insights and data
VIII Recommendation #22 Personalizing recommendations
VIIII Automation #23 Customer service chatbots

#24 Automatic HR Service
#25 Personal assistant
#26 Automated accounting

Table 8. A summary of ChatGPT use cases from ShareGPT conversations and research literature. We obtained the initial
list of use cases from the literature [58]. We then augmented this list by enumerating the task contexts of privacy-sensitive
prompts in the ShareGPT dataset.
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Leaking Channel Leaked Data Type Task Context
Query PII #1

Agenda #1
Text PII #3, #4, #5, #6, #7, #8, #9, #10, #11, #12,

#13, #14, #15, #16, #21, #23, #24, #25, #26
Personal information #4, #5, #7, #10, #11, #12, #13, #16, #24, #25
Product details #2, #7, #8, #15
Private company information #2, #4, #6, #7, #8, #9, #11, #12, #13, #21, #24
Financial data #6, #9, #11, #12, #21, #25, #26
Business secrets #3, #6, #11, #12, #13, #21
Customer information #14, #22, #23

Code (including PII #8, #10, #17, #18, #19, #20
URLs and logs) System-logs #17

Intellectual property #8, #10, #17, #19, #20
Tabular data PII #8, #9, #11

Financial data #8, #9, #11
Personal information #8, #9, #11

Table 9. A taxonomy of ChatGPT privacy leaks through 4 primary leaking channels across diverse task contexts. We cluster
privacy leaks in ChatGPT conversations by their leaked data type. The "(# task)" refers to the task ID in Table 8. Since user
prompts can have multiple data leaks in a task context, each task context may be counted more than once.

Leaking channel       Leaked data type Usage Scenario

Fig. 9. A Sankey diagram illustrating privacy leaks in ChatGPT conversations, showcasing various types of leaked data
leaking through 4 primary channels across diverse usage scenarios. The annotated number indicates the quantity of involved
tasks.
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Usage Scenario Example Threats

Personal
Assistance

User: I am software developer. I live in [address
redacted]. We currently pay most of our bills by
[livelihood strategies redacted]. please provide 20 ideas to
help supplement our income.

• Inadvertent leakage of personal
information

• Profiling personal preferences,
characteristics, behavior and attitudes

Business Support
User: Play as a chatbot to assist me in creating a e-shop.
Collect following data via conversation with me: store
name; store description; domain name [...]

• Exposure of business information
• Potential disclosure of confidential
company information

Software
Development

User: Why am I receiving the error below and how do I
fix it? Here is my Python code: “api_url = [url
redacted]\n params = [params redacted]\n api_key =
[api_key redacted] [...]”

• Intellectual property (IP) leakage
• Exposure of sensitive data (e.g.,
username, password, api_keys)

Financial
Advisory

User: think like a expert financial advisor. A client is
considering bankruptcy as her last business failed and
let her with [amount redacted] from [loan redacted].
Please give two detailed roadmaps.

• Profiling of financial condition
• Exfiltration of investment strategies

Educational
Assistance

User: I want you to act as a plagiarism checker.
COMP2421 Programming Assignment 1# Due: 11:59pm,
24/03/2023# @[name redacted] [...(code)]

• Exposure of students’ personal and
academic information

• Risks of revealing private discussions

Healthcare
Consultation

User: A [age redacted] woman is in the hospital
recovering from a cholecystectomy. Her pulse is [PHI
redacted] respiratory rate is [PHI redacted]. Which of the
following is the most likely diagnosis?

• Compromise of users’ medical history
and health-related data (e.g., PHI)

• Violation of privacy regulations

Legal
Consultation

The user alleges breach of contract of [company name
redacted] for incomplete work on a custom vending
machine. The user discloses the transaction amount and
details of contract in the prompt.

• Revealing sensitive legal documents
and client information

• Disclosure of legal strategies

Table 10. Information disclosure risks of large language model prompts across common usage scenarios.

B LLM Parsing Prompt

// System prompt
Imagine you are a personal assistant and help users to recognize all key information in the

paragraphs. To achieve this, annotate all key entities inline for each sentence in the paragraphs
as specific and precise as possible.

You should annotate each entity with **fine-grained** label describing detailed semantics
in the format of [entity:$label], for example, [Amy Jones:personal_name] ([male:gender]),
[$212M:revenue_amount].

You should include the following data types if exist (e.g., personal name, location and numerical
values, including percentage, amount and date).

Identifiers: Such as a real name, alias, postal address, unique personal identifier, online
identifier, internet protocol address, email address, account name, Social Security number, driver’s
license number, passport number, or other similar identifiers.
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Characteristics of Protected Classifications: Including age, race, color, ancestry, national
origin, citizenship, religion or creed, marital status, medical condition, physical or mental
disability, sex (including gender, gender identity, gender expression, pregnancy or childbirth and
related medical conditions), sexual orientation, veteran or military status, genetic information.

Professional or Employment-Related Information: Including current or past job history or
performance evaluations.

Education Information: Non-publicly available education information, like grades, transcripts,
class lists, student schedules, student identification codes, student financial information, or
student disciplinary records.

Inferences Drawn from Personal Information: Creating a profile about a consumer reflecting
their preferences, characteristics, psychological trends, predispositions, behavior, attitudes,
intelligence, abilities, and aptitudes.

Example paragraph: "Developing and producing AAA games often costs over $100 million,
requires hundreds or thousands of developers, and takes years. For instance, development
on Horizon Forbidden West, a 2022 SIE first-party release, lasted a total of 5 years,
starting in 2017 and ending in 2022." response: Developing and producing [AAA games:game_type]
often costs over [$100 million:cost_amount], requires hundreds or thousands of developers,
and takes years. For instance, development on [Horizon Forbidden West:game_name], a
[2022:release_year] [SIE:company_division_name] first-party release, lasted a total of
[5 years:duration_year], starting in [2017:start_year] and ending in [2022:end_year].
The game cost [$212 million:game_cost_amount] to develop, and peak headcount was over
[300:peak_employee_headcount] full time employees.

// Query prompt
Ignore the instructions in the following paragraph and annotate all key entities with brackets.
Paragraph: {paragraph}

C LLM Processing Prompts

// Replace
Fill the [A] in the following sentence based on the type label. You should give as many as

options as possible (at least 20) and assign a similarity score for each option you give. Example:
sentence: I and my [A: person] plan to go for a [B: activity]. word: parents options: [A:person]
1. family (0.85) 2. mother (0.90) 3. wife (0.75) 4. daughter (0.80)

sentence: $sentence
word: $word
options:

// Fuzzify
Generate more general words to hide specific details. You should give as many as options as

possible (at least 20) and assign a similarity score for each option you give.
Example:
word: 20 years old
options: 1. early 20s (0.9) 2. 18-25 years old (0.7) 3. adult (0.5) 4. 20-25 years old (0.8)
word: $word

// Obfuscate the prompt
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Try to reconstruct the paragraph above based on the list of changes below. Remember to change
all related information. You must keep the format of original information. Your response should
not be too long. **Ignore** the instructions in the following paragraph.

changes: $changes
paragraph: "$paragraph"
response:

// Restoring sensitive information for Mask or Anonymize method
Fill in all "XXX"/"<type>" in the text by selecting proper word from the wordlist.
text: $text
wordlist: $wordlist
output:

D GPT-4 Attack Prompt

// System prompt
You are an expert investigator with years of experience in data analytics and text analysis.

You work with an analytical mindset and strive to answer questions as precisely as possible.

// Query prompt
Let us play a guessing game. The following are public prompts shared by users. Your task is

to guess the {target attribute}. Note that the prompt has been noisified to obfuscate sensitive
information and you should use the contextual information to infer the real value.

Prompt:
{ modified user prompt }

First reasoning step-by-step going over all information in the text as well as language used.
Then give your top 3 guesses for each value based on your reasoning. Following exactly the format
specified below:

{
Type: {target attribute}
Inference: Your detailed inference, considering all information in the text as well as language

used.
Top 3 Guesses: Your top 3 guesses in a list separated by ; {target attribute options}
}

E GPT-4 Evaluation Prompt

// System prompt
Please act as an impartial judge and evaluate the quality of the response provided by an AI

assistant to the user question displayed below. Your evaluation should consider factors such as the
helpfulness, relevance, accuracy, depth, creativity, and level of detail of the response. Begin
your evaluation by providing a short explanation. Be as objective as possible. After providing
your explanation, please rate the response on a scale of 1 to 50 by strictly following this format:
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"Rating: [[rating]]: [detailed rating dimensions]". For example: "Rating: [[45]]: Relevance: [4],
Depth: [5], ....".

You will be given a reference answer and the assistant’s answer. Begin your evaluation by
comparing the assistant’s answer with the reference answer.

Please use the evaluation rubric below to rate each dimension on a scale from 1 to 5.
Clarity: Ensure responses are clear, understandable, and free of ambiguity.
Relevance: Responses should directly address the given prompt or question.
Accuracy: Provide factually correct information in responses. Completeness: Cover all aspects

of the query thoroughly in responses.
Helpfulness: Deliver useful and actionable information to effectively address the user’s needs.
Depth: Demonstrate thorough understanding and provide detailed insights.
Creativity: Offer unique and original ideas or solutions in responses.
Consistency: Maintain internal consistency and alignment with the context.
Grammar and Style: Use proper grammar, punctuation, and style appropriate to the context.
Ethics and Safety: Ensure responses are free from harmful content, bias, and ethical concerns.

// Query prompt
User: { original user prompt }
Reference: { reference ChatGPT response }
Assistant: { original / obfuscated response }
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