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TreeQuestion: Assessing Conceptual Learning Outcomes with
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The advances of generative AI have posed a challenge for using open-ended questions to assess conceptual
learning outcomes, as it is increasingly common for students to use tools like ChatGPT to generate long
textual answers. However, teachers still have to spend substantial time reading the answers and inferring
students’ learning outcomes. We present TreeQuestion, a human-in-the-loop system designed to help teachers
create a set of multiple-choice questions to assess students’ conceptual learning outcomes. When a teacher
seeks to assess students’ comprehension of specific concepts, TreeQuestion taps into the wealth of knowledge
embedded within large language models and generates a set of multiple-choice questions organized in a
tree-like structure. We evaluated TreeQuestion with 96 students and 10 teachers. Results indicated that
students achieved similar performance in multiple-choice questions generated by TreeQuestion and open-
ended questions graded by teachers. Meanwhile, TreeQuestion could reduce teachers’ efforts in creating and
grading the multiple-choice questions in contrast to manually generated open-ended questions. We estimate
that in a hypothetical class with 20 students, using multiple-choice questions from TreeQuestion may require
only 4.6% of the time compared to open-ended questions for assessing learning outcomes.
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1 INTRODUCTION
Recent surveys find that a large majority of students (89%) are using ChatGPT for homework
assignments [61], which has sparked numerous discussions concerning the challenges posed
by AI in terms of plagiarism, cheating, and learning [13, 15]. One challenge around knowledge-
based open-ended questions, particularly prevalent in STEM education [57], is that large language
models (LLMs) can significantly reduce students’ efforts in coming up with long textual answers
to open-ended questions. Imagine a computer science professor who wants to assess students’
comprehension of two cryptography concepts: hash and encryption. An example question would
be as follows: Explain the difference between hashing and encryption and the types of algorithms

Authors’ addresses: Zirui Cheng, chengzr19@mails.tsinghua.edu.cn, Tsinghua University, Beijing, China; Jingfei Xu,
jxu496@wisc.edu, University of Wisconsin Madison, Madison, WI, USA; Haojian Jin, haojian@ucsd.edu, University of
California San Diego, La Jolla, CA, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2024 Copyright held by the owner/author(s).
2573-0142/2024/11-ART431
https://doi.org/10.1145/3686970

Proc. ACM Hum.-Comput. Interact., Vol. 8, No. CSCW2, Article 431. Publication date: November 2024.

https://doi.org/10.1145/3686970
https://doi.org/10.1145/3686970


431:2 Cheng, et al.

for each and when you should use each1. If students utilize the provided question as a prompt for
ChatGPT’s May 24, 2023 version, they will instantly obtain a 507-word response. The professor will
have to spend substantial time reading these answers and guessing students’ learning outcomes.

In response, teachers are actively searching for solutions to mitigate these concerns [13, 15]. For
example, some teachers are starting to use AI plagiarism detection software (e.g., GPTZero [1],
ZeroGPT [2]) to determine if the student has utilized AI. However, the results can sometimes be
incorrect [30]. Meanwhile, some teachers have opted to completely redesign their assignments to
incorporate AI usage. For example, professors at UCSD ask students to write essays with ChatGPT,
identify the errors generated by ChatGPT, and find authoritative sources to provide accurate
information [23]. Nevertheless, it is not easy to generalize these attempts across disciplines, and
designing and evaluating these non-standard assignments require significant extra effort.

A B

C
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Fig. 1. TreeQuestion assists teachers in generating a set of auto-gradable multiple-choice questions, serving
as an alternative to conventional knowledge-based open-ended questions that require manual grading. (A)
TreeQuestion supports teachers in designing a scenario-based multiple-choice question to assess students’
learning outcomes in terms of applying the four concepts includingMAC and Hashing in a given situation.
(B) TreeQuestion arranges a series of multiple-choice questions at varying levels into a tree-like structure. (C)
TreeQuestion represents a student’s learning outcome as a matrix, with rows indicating the concepts and
columns specifying the levels of understanding.

We present TreeQuestion, a human-in-the-loop system designed to help teachers create a set of
multiple-choice questions to assess students’ conceptual learning outcomes.When a teacher seeks to
assess students’ comprehension of specific concepts, TreeQuestion taps into thewealth of knowledge
embedded within LLMs and breaks down the open-ended question into a series of multiple-choice
questions organized in a tree-like structure (Fig. 1). TreeQuestion then crafts distractor options for
these questions systematically by leveraging the ability of LLMs to generate seemingly accurate
answers. Students who grasp the concept can find the correct answer in TreeQuestion quickly, while
those who do not, struggle. Meanwhile, teachers can grade the conceptual questions automatically.
Yet, generating a set of multiple-choice questions correctly and meaningfully is challenging.

First, compared with open-ended questions, which allow teachers to delve into students’ thought

1This question is excerpted from chegg.com [12]
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processes through the examination of their open-vocabulary responses [17], a single multiple-
choice question only gives a binary assessment of a student’s mastery of a concept. To tackle this
problem, TreeQuestion use Bloom’s taxonomy [8] to classify students’ learning outcomes into six
levels hierarchically: Remember, Understand, Apply, Analyze, Evaluate, and Create. For each level,
TreeQuestion generates a multiple-choice question aimed at evaluating that level of mastery of the
target concept. Therefore, learning outcomes assessed by TreeQuestion can be presented in the
form of matrices (as shown in Fig. 1C), where the rows stand for the concepts and the columns
denote the level of understanding.

Second, LLMs are prone to introducing errors and are unaware of redundancies among distractor
options. We conducted a pilot study by instructing a commercial service (i.e., ChatGPT) to generate
multiple-choice questions with annotated answers. The results indicate that more than half of the
questions were illogical due to issues like wrong answers, out-of-context information, or ambiguous
options. To address this problem, we introduce a new programming pattern for interacting with
LLMs called "Explore-Validate-Generate": TreeQuestion begins by generating knowledge graphs
that encompasses the given set of concepts as well as their related concepts. TreeQuestion then
allows teachers to quickly validate the correctness of the knowledge graph and generate multiple-
choice questions accordingly.
Evaluation:We evaluated TreeQuestionwith 96 students and 10 teachers. First, we designed 6 pairs
of matched open-ended questions and multiple-choice questions in computer science. 96 student
participants answered these questions in a survey. We compared students’ responses to both open-
ended questions and multiple-choice questions generated from TreeQuestion. Student performance
data suggest that in the areas we investigated, there are no significant differences related to
question types, indicating that well-designed multiple-choice questions from TreeQuestion can
assess students’ learning outcomes similarly to open-ended questions. Second, we invited 10
teachers to create open-ended questions without TreeQuestion and multiple-choice questions with
TreeQuestion for knowledge assessment. TreeQuestion could reduce teachers’ efforts in creating
and grading the multiple-choice questions compared with open-ended questions. Based on the
results, we estimate that in a hypothetical class with 20 students, using multiple-choice questions
with TreeQuestion requires only 4.6% of the time compared to the time needed for assessing learning
outcomes using open-ended questions. Participants commented that TreeQuestion reduced their
efforts by providing abundant choices in background knowledge, question distractors, and difficulty
levels that could be easily incorporated into normal education practices.
Limitations: TreeQuestion is designed to only assess conceptual learning outcomes. However,
educators may use open-ended questions for other educational purposes, such as fostering creative
thinking. It is important to note that TreeQuestion is not designed to support these usages. Besides,
a student may forward multiple-choice questions generated by TreeQuestion to LLMs. We consider
this problem out of the scope of this paper.

Our specific research contributions are as follows:
• We develop and evaluate TreeQuestion as an end-to-end system, demonstrating the effec-
tiveness and accuracy of assessing conceptual learning outcomes through multiple-choice
questions generated by LLMs.

• We propose a method for generating multiple-choice questions, which can be used to system-
atically assess students’ conceptual learning outcomes.

• We introduce a novel programming pattern, Explore-Validate-Generate, which streamlines
human interactions with imperfect LLMs in creating multiple-choice questions.
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2 BACKGROUND AND RELATEDWORK
TreeQuestion builds on ideas from three different areas: (1) open-ended questions and multiple-
choice questions; (2) large language models in education; and (3) techniques for multiple-choice
question generation.

2.1 Open-endedQuestions and Multiple-ChoiceQuestions
For decades, educators have been dedicated to discovering the most effective question repre-
sentations for evaluating students’ learning progress and enhancing the quality of teaching [4].
Open-ended questions are one of the most effective ways of reflecting students’ knowledge and
performance. Using open-ended questions, teachers can prompt students to develop more complex
higher-order thinking skills. Researchers often consider open-ended questions to be more adept at
measuring critical thinking [49] and encouraging deeper learning [69]. Although it is generally
easy to write high-order open-ended questions, grading them is time-consuming and not amenable
to automation. Multiple-choice questions can also be effective assessment tools with a variety
of benefits for both teachers and students [43, 66]. Despite some concerns that multiple-choice
questions only measure memorization of facts, there is also evidence showing that well-constructed
multiple-choice questions are capable of both assessing and encouraging deeper levels of process-
ing [24, 37, 44]. Multiple-choice questions can be efficient, objective, easy to grade automatically,
and can be successfully used to assess a variety of learning outcomes. However, writing high-quality
multiple-choice questions is time-consuming because of the difficulties in figuring out key messages
and comping up with distractors [56].

2.2 Large Language Models in Education
Recent advances in large language models have shown great promise for both teachers and stu-
dents [32]. On the one hand, large language models can be used in different ways to improve student
learning and engagement such as generating interactive materials [16], acting as tutor agents [3]
or tutee agents [31], and providing peer feedback [29, 48]. On the other hand, researchers also ad-
dressed the use of large language models from the teacher’s perspective to facilitate the assessment
of student answers [42], generation adaptive feedback [71], and preparation of teaching content [46].
However, the misapplication of large language models also poses substantial challenges within the
realm of education, especially the risk of academic dishonesty. For example, students can potentially
use large language models to cheat on open-ended questions by copying and pasting the generated
responses into their assignments [13, 15, 33]. In response to such concerns, automatic detection
of machine-generated text has been widely discussed in the NLP community [6, 22, 28, 41, 53].
Available tools such as GPTZero [1] and ZeroGPT [2] can also help people investigate machine
involvement in writing tasks to some extent. However, it is still difficult to completely distinguish
whether a text is generated from humans or machines with these tools [13, 21, 32]. In the real
world, these tools can only provide limited assistance. The results generated from these tools still
make it difficult for people to draw valid conclusions. In this paper, instead of seeking post-hoc
methods to detect cheating, we turn to an ad-hoc reflection on the process of knowledge assessment
— we attempt to leverage the generative capabilities of large language models to enhance efficient
knowledge assessment.

2.3 Techniques for Multiple-ChoiceQuestion Generation
Prior research has shown two main approaches for automatic multiple-choice question generation
for educational purposes. One approach utilizes crowdsourcing techniques [58, 67]. The other
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approach focuses on developing end-to-end NLP models specifically designed for question genera-
tion, where questions are generated from a given text [51, 68, 70]. With recent advances in large
language models, researchers have investigated the possibility of generating questions with large
language models [16, 18, 47, 59]. However, existing automatic question generation techniques are
good at creating factual questions [9, 14, 35], while not being able to generate questions that target
educational goals lying in the higher levels of Bloom’s Taxonomy [5, 8]. Therefore, the generated
questions are often of low quality and limited in types and difficulty levels [10, 26, 35].
While automatic question generation might be insufficient to meet educational requirements,

researchers have proposed different systems to support human-AI collaborative question genera-
tion. Wang et al proposed to modulate the automatic question generation process with different
components to offer a flexible interface for instructors to control various aspects of the produced
questions [56]. Lu et al proposed systems that support instructors to conveniently design high-
quality questions to help students comprehend readings [38]. However, existing human-AI systems
for multiple-choice question generation are still limited in the diversity of input sources, which may
impose challenges on comprehensive knowledge assessment. In this paper, we see large language
models themselves as the knowledge base and introduce a human-AI collaborative approach to
explore systematic knowledge assessment.

3 PILOT STUDY
To inform the design of TreeQuestion, we examine the feasibility and challenges of using LLMs to
generate multiple-choice questions for testing students’ conceptual learning outcomes.
Method. We first gathered a preliminary collection of prompts from two professors who are
actively using LLMs to generate quiz questions for their classes. We observed that most prompts are
instructions (e.g., generate a multiple-choice question that ...), and these prompts frequently differ
in terms of the number of questions desired by the professor, the number of concepts involved,
and the cognitive depth required to respond to each question. To ease the quality assessment
process, we then adapted these prompts to generate questions around a few common concepts in
computer cryptography. Table 1 enumerates a few example prompts utilized in the experiment. For
each prompt, we called the gpt-3.5-turbo API 10 times with a temperature of 1, which signals a
relatively high degree of randomness. In the end, two authors manually assessed the quality of the
generated questions.
Results. We made the following key observations. First, LLMs can generate high-quality
questions with various context information, particularly ones that simulate real-world
experiences. Fig. 1A illustrates an example question, which depicts a scenario in which Alice wants
to ensure the integrity and authenticity of a message. Conventionally, generating scenario-based
questions has been a time-consuming process for teachers, as they must brainstorm both suitable
scenarios and corresponding options [39]. By utilizing scenario-based questions generated by LLMs,
we can transform many multiple-choice questions from merely assessing simple memorization to
evaluating higher-order thinking skills, such as analytical thinking, at a low cost.
Second, LLMs may introduce inaccurate, ambiguous, and out-of-scope information

(Fig. 2), and teachers must manually inspect the content to ensure accuracy. In our study,
we observed that LLMs sometimes annotate the generated questions with incorrect answers and
provide seemingly plausible explanations. Indeed, LLMs may not even be able to annotate the same
question with consistent answers across different runs. Possible reasons are that LLMs work by
modeling the probability of co-located words and are limited in reasoning capabilities [20, 55].
Moreover, LLMs frequently generate highly ambiguous options that are hard to falsify. There are
also instances where LLMs introduce concepts far beyond the expected scope of the prompts. As a
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Prompt Types Example Prompts Identified
Challenges

Single question,
low-level

Generate one multiple-choice question
related to the concept of symmetric
encryption.

Ambiguous
expression in
distractors.

Single question,
high level

Provide a multiple-choice question that
involves a comprehensive analysis and
evaluation regarding symmetric
encryption.

Inconsistent
answers to
questions.

Multiple questions,
low-level

Access the basic understanding of
symmetric encryption and asymmetric
encryption by giving a set of
multiple-choice questions.

Multiple answers
among options.

Multiple questions,
high-level

Compare and contrast the in-depth
comprehension regarding symmetric
encryption and asymmetric encryption
using a set of multiple-choice
questions.

Insufficient
questions at higher
levels.

Group questions,
high-level

Design a set of 10 multiple-choice
questions on higher levels involving
interaction between symmetric and
asymmetric encryption.

Homogenized
answers across
different questions.

Table 1. Example results from the pilot study to examine the feasibility and challenges of large language
models in generating multiple-choice questions.

result, the two professors who provided the initial set of prompts mentioned that they often have
to experiment with multiple prompts (𝑁 > 5) and manually scrutinize the content to identify a
usable question.

A Inaccuracy B Ambiguity

Input. Generate and annotate one multiple-choice question 
that relates to the concept of symmetric encryption.

Output. �estion: Which encryption technique ensures that 
the same plaintext input will always produce di�erent 
ciphertext outputs? 
A. Block cipher 
B. Hash function
C. Stream cipher 
D. Di�e-Hellman key exchange
Answer: B. Hash function.

Output. �estion: Which of the following a�acks is most 
likely to exploit weekness in an ecryption algorithm?
A. Brute force a�ack.
B. Social engineering a�ack.
C. Denial-of-Service (DoS) a�ack.
D. Man-in-the-Middle (MitM) a�ack. 
Answer: D. Man-in-the-Middle (MitM) a�ack

Input. Generate and annotate one multiple-choice question 
that relates to the concept of symmetric encryption.

Fig. 2. LLMsmay introduce inaccurate, ambiguous, and out-of-scope information, and teachersmustmanually
inspect the content to ensure accuracy.

Thirdly, the questions generated in batches by LLMs often lack diversity. Since it typically
requires searching through blindly generated questions to find a usable one, a common approach
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for teachers is to prompt LLMs to generate 5-10 questions in batches. We found that the generated
questions in these batch-generation experiments often turn out to be redundant and only assess a
limited range of knowledge. In some cases, LLMs may even repetitively employ the same phrase.
This production of redundant content [27, 60] can likely be attributed to the exposure bias inherent
in large language models [45, 52]. Furthermore, blindly generated multiple-choice questions tend
to exhibit a bias toward involving only low-level cognitive processes. For instance, when we
instructed LLMs to create 10 multiple-choice questions related to symmetric encryption, 8 of them
were restricted to memorizing and recalling tasks.

4 ASSESSING CONCEPTUAL LEARNING OUTCOMES USING MULTIPLE-CHOICE
QUESTIONS

In this section, we discuss the rationale of our learning outcome formulation, and how we use
multiple-choice questions to measure the learning outcomes.
Defining Fine-grained Learning Outcomes. We employ Bloom’s Taxonomy [5] to define the
learning outcomes of students. Bloom’s Taxonomy is widely used today by educators around
the world [54], which outlines six hierarchical levels of learning: Remember, Understand, Apply,
Analyze, Evaluate, and Create. The lower levels of Bloom’s taxonomy focus on the knowledge that
we want our students to remember and understand. The middle levels focus on the application
and analysis of information. At the top of Bloom’s taxonomy are tasks that involve evaluating and
creating.

TreeQuestion formulates the learning outcomes as the tested concepts and the associated levels
of understanding. For instance, a student might have a nuanced understanding of the concept
“Hash", yet only be able to recite the definition of “MAC". This could yield a granular score profile
like:

“𝐻𝑎𝑠ℎ” : “𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒”, “𝑆𝑖𝑔𝑛” : “𝑈𝑛𝑑𝑒𝑟𝑠𝑡𝑎𝑛𝑑”, “𝑀𝐴𝐶” : “𝑅𝑒𝑚𝑒𝑚𝑏𝑒𝑟”, ...
Note that since students only answer multiple-choice questions without actively producing original
content, TreeQuestion cannot assess a user’s comprehension of a concept at the "create" level.
Assessing Learning Outcomes with Multiple-Choice Questions. Evaluating students’ fine-
grained conceptual learning outcomes has been challenging. Traditional examination scores only
offer an aggregated view of learning outcomes within a particular subject. To unearth students’
thought patterns and pinpoint their knowledge shortfalls, researchers often have to analyze open-
ended responses [17], a process that demands substantial time investment.

In contrast, the central premise of TreeQuestion is to generate a set of multiple-choice questions,
each tailored to gauge a specific level of understanding of certain concepts.Multiple-choice questions
can be easy to grade automatically, thus enabling efficient assessment of students’ learning outcomes.
For instance, the question depicted in Fig. 1 prompts students to apply acquired knowledge in a
novel context. A correct response to this question suggests that the student has likely reached the
“apply" stage of Bloom’s taxonomy for the four intertwined concepts: encryption, firewall, VPN,
and MAC.
TreeQuestion represents a student’s learning outcome in the form of a matrix (as shown in

Fig. 1C), where the rows stand for the concepts and the columns denote the level of understanding.
The scores in each cell of the matrix can be computed according to students’ responses to questions
specified for certain concepts and levels. It is important to note that due to the nature of multiple-
choice questions, a student might select the correct answer without fully understanding all the
related concepts. As a result, we present the outcomes in their raw form, keeping track of instances
where a student correctly selects or refrains from selecting a concept.
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Explore Validate Generate

✔

✘✔

✔

✔ ✔

✔

�estion Node

Key

Distractors

Concept
List

Background
Knowledge

�estion Tree

Knowledge Graph

Fig. 3. The workflow of TreeQuestion: (A) Explore: Users specify a concept list and TreeQuestion leverages
large language models to generate paragraphs of background knowledge based on pre-defined educational
goals; (B) Validate: TreeQuestion transforms background knowledge into a knowledge graph, and users
can review the generated content presented in an interactive interface to ensure accuracy; (C) Generate:
TreeQuestion helps users generate the key and distractors in the multiple-choice questions with pairs of
nodes and edges from the knowledge graph. Afterward, users can create multiple-choice questions targeted
at different levels in the question tree.

5 EXPLORE-VALIDATE-GENERATE
To generate the multiple-choice questions described above, we introduce a new programming
pattern for interacting with large language models called “Explore-Validate-Generate”, which guides
the question-generation process to meet the design goals. Prior works in both crowdsourcing [7]
and large language models [64, 65] have also introduced similar ideas like modulating the scope of
sub-tasks to ensure the quality of complex tasks. Inspired by them, TreeQuestion aims to use the
Explore-Validate-Generate pattern to address the challenges of large language models in question
generation tasks. The Explore-Validate-Generate pattern splits the whole task into three stages
where large language models and humans can contribute complementary capabilities. The workflow
of Explore-Validate-Generate in TreeQuestion is illustrated in Fig. 3.

5.1 Explore: Extracting Background Knowledge with Concepts

A

B

Fig. 4. The Explore interface of TreeQuestion: (A) users input concept, field, and level information of background
knowledge; (2) large language models extract targeted knowledge according to user input.
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Input
Generate some statements regarding the learning objectives of hashing
in the area of cybersecurity. The statements should cover the
understand level in Bloom’s Taxonomy. Each statement should start with
a verb.
The definitions of the understand level in Bloom’s Taxonomy are:
Understand means construct meaning from instructional messages,
including oral, written, and graphic communication. Cognitive processes
in the category of understand include interpreting, exemplifying,
classifying, summarizing, inferring, comparing, and explaining.
Exemplifying means finding a specific example or illustration of a
concept or principle.

Output Providing examples of commonly used hashing algorithms.

(a) Stage 1: Generate learning objectives.

Input Here are some statements regarding the learning objectives of hashing
in the area of cybersecurity.

Providing examples of commonly used hashing algorithms.

Generate some detailed knowledge according to these statements.

Output Examples of commonly used hashing algorithms are MD5, SHA-1, and SHA-256.
These algorithms take the input data and produce a unique hash value as
the output.

(b) Stage 2: Generate background knowledge.

Table 2. Example input and output of prompting large language models with the concept “hashing” targeted
at the “understand” level in Bloom’s Taxonomy in the Explore stage. First, we generate learning objectives
with the detailed explanations of different levels and related cognitive processes in Bloom’s Taxonomy
extracted from previous literature [5]. Second, we leverage the learning objectives to instruct large language
models to generate background knowledge.

The Explore stage leverages large language models to produce background knowledge tailored for
multiple-choice question generation. With user-specified concepts, fields, and levels, TreeQuestion
leverage Bloom’s Taxonomy to extract abundant background knowledge from large language
models.

Imagine that users may want to test students’ knowledge about symmetric encryption and asym-
metric encryption in network security, they could specify the concept as “symmetric encryption”
and “asymmetric encryption” and specify the field as “network security” as Fig. 4 A shows. To
instruct large language models to generate background knowledge, users can choose different levels
in Bloom’s Taxonomy including Remember, Understand, Apply, Analyze, Evaluate, and Create
in the interface. The content generated from large language models is directly displayed in the
interface as Fig. 4 B shows. When the users are satisfied with the generated content, they can click
on the “select” checkbox to select the content for later use. It is also possible that the users might
not think the generated background knowledge can meet their expectations. In this case, they can
also update the specifications in the interface and re-generate the background knowledge.
To obtain background knowledge that can meet diverse purposes for question generation, it is

still challenging to design precise prompting strategies to instruct large language models. Here we
extracted detailed explanations of different levels in Bloom’s Taxonomy from existing literature [5]
as part of the prompts. As is suggested by previous work [5], there are also multiple cognitive
processes involved in each level of Bloom’s Taxonomy, which delineate the breadth and boundaries
of them. Therefore, we also included the specific definitions of each cognitive process associated
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with each level in the prompts. For example, if a user seeks to get background knowledge of “hashing”
at the “apply” level, TreeQuestion would incorporate the definitions of “apply” like “carrying out
or using a procedure in a given situation” in the prompts. The “apply” level then consists of two
cognitive processes: “executing” – when the task is a familiar exercise and “implementing” – when
the task is an unfamiliar problem. All the definitions of the level and the related cognitive processes
are provided in the prompts to give large language models more information for precise background
knowledge generation.
In practice, we found that state-of-the-art large language models such as gpt-3.5-turbo2

provided by OpenAI demonstrated excellent capabilities of understanding the provided explanations
of Bloom’s Taxonomy. The prompts used by TreeQuestion can successfully extract the background
knowledge embedded within large language models related to different concepts. However, we
still observed that within single runs, there were some unsatisfactory cases where large language
models only gave abstract descriptions of the learning objectives without explaining the background
knowledge in detail. To handle this problem, we split the generation task into two sub-stages where
the learning objectives and background knowledge are generated sequentially as suggested by
prior work [65]. By doing so, the previously mentioned unexpected cases rarely existed in our
system. Examples of the input and output are illustrated in Table 2. We first guided large language
models to derive specific educational goals according to the explanations of levels and related
cognitive processes provided in the prompts. With the goals obtained, we then instructed large
language models to generate detailed knowledge. More example prompts covering different levels
and related cognitive processes in this stage have been included in the appendix A.

5.2 Validate: Verifying Correctness over Knowledge Graphs
Since the background knowledge generated from large language models might contain inaccurate
information, TreeQuestion enables users to check the correctness of background knowledge in the
Validate stage. TreeQuestion transforms the background knowledge into knowledge graphs with
the help of large language models. Users can create, update, and delete the nodes and edges which
would be used as materials to generate the options in multiple-choice questions.

A B

Fig. 5. The Validate interface of TreeQuestion: (A) users input concept, field, and level information of back-
ground knowledge; (2) large language models extracts targeted knowledge according to user input.

2https://platform.openai.com/docs/models/gpt-3-5
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Input
Create a knowledge graph on the concepts related to hashing in the
field of cybersecurity based on the following source text. Generate a
list of relations with 3 columns in this order: subject, predicate,
and object.
Hashing is a process that converts data into a fixed-size string. In
cybersecurity, hashing ensures data integrity, and authenticity, and
protects sensitive information. Common hashing algorithms include MD5
and SHA-256, with MD5 used for checksums and SHA-256 for cryptographic
purposes.

Output
Subject Predicate Object
Hashing ensures data integrity
Hashing ensures authenticity
Hashing protects sensitive information
Hashing algorithms include MD5
Hashing algorithms include SHA-256
MD5 is used for checksums

SHA-256 is used for
cryptographic
purposes

Table 3. Example input and output of prompting large language models with the concept “hashing” in the
Validate stage. We prompt large language models to generate a list of triplets with relations based on the
background knowledge generated in the previous stage.

TreeQuestion initiate a knowledge graph by prompting large language models with the back-
ground knowledge generated in the Explore stage. User can also modify the content in the text
field to customize the construction of knowledge graphs. TreeQuestion maps the results from
large language models into an interactive interface where nodes denote the concepts and edges
denote the relations. An example of the interactive interface in the Validate stage is shown in Fig. 5.
We defined three basic operations of both nodes and edges including create, update, and delete in
the interactive interface. Users can validate the knowledge graphs through iterative review and
modification of nodes and edges.
• Create: Although the knowledge graphs have covered intensive knowledge related to the source
concepts, it is still possible that large language models miss key knowledge related to the source
concept. We allow users to create new nodes and edges by dragging them out from the hurdles
of an existing node and connecting the hurdles of existing nodes, respectively.

• Update: The nodes and links presented in the knowledge graph might not be accurate since they
are purely generated from large language models. We allow users to modify the labels simply by
clicking on the nodes and links.

• Delete: Since large language models may produce some irrelevant knowledge that might not be
valuable for question generation, we allow users to delete unnecessary nodes or edges by simply
tapping the backspace key.
Through the design of graphical interfaces in the Validate stage, TreeQuestion aims to enhance

the efficiency of both knowledge validation and distractor generation of multiple-choice questions.
On the one hand, knowledge graphs can present abundant information about the underlying
relationships of different concepts within the background knowledge, which enables the more
flexible organization of concepts and reduces the cognitive load needed for comprehension [36, 62].
On the other hand, plausible distractors in multiple-choice questions are often created based on text
transformation such as adding, removing, or changing the components in the original sentence [56].
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With the node and edge representation of the concepts and relations in knowledge graphs, users can
easily find and manipulate components to create potential distractors in multiple-choice questions
in the Generate stage.

In order to construct knowledge graphs from background knowledge, we directly prompt large
language models to generate a list of relations consisting of subject, predicate, and object in a
zero-shot setting. The original background knowledge selected by users was directly incorporated
into the prompts. In practice, state-of-the-art large language models also showed satisfactory
performance in constructing the list of relations. An example of the input and output when calling
large language models in the Validate stage is shown in Table 3. The parsed subjects and objects
will be mapped into nodes and the parsed predicates will be mapped into edges between nodes.

5.3 Generate: CreatingQuestions at Multiple Levels
Given the abundant knowledge information provided in previous stages, TreeQuestion enables
users to design questions targeted at different levels in Bloom’s Taxonomy to test students’ learning
outcomes systematically in the Generate stage.

Input
Generate concrete rules for writing the distractors in multiple-choice
questions regarding the statement "MD5 is an example of a hashing
algorithm". The rules for creating the distractors should be based on
the subject, predicate, and object presented in the statement. The
statement might appear in the form of the following question template.
[object] + is + [concept]. For example, [object] + is + [example 1] +
[example 2] + [example 3].

Output 1. Ensure the distractors are other hashing algorithms.
2. Include distractors that are not related to hashing algorithms.
3. Create distractors that are incorrect or false statements about MD5.

(a) Stage 1: Generate concrete rules.

Input Generate several distractors regarding the statement "MD5 is an
example of hashing algorithm".
The distractors should be generated based on the following rules.

1. Ensure the distractors are other hashing algorithms.
2. Include distractors that are not related to hashing algorithms.
3. Create distractors that are incorrect or false statements about MD5.

Output 1. SHA-1 is an example of the hashing algorithm.
2. RSA encryption is an example of the hashing algorithm.
3. MD5 is a symmetric encryption algorithm.

(b) Stage 2: Generate specific distractors.

Table 4. Example input and output of prompting large language models to generate distractors with the
concept “hashing” in the Generate stage. First, we prompt large language models to create rules to guide
the creation of distractions based on the question template provided in the interface. Second, we prompt
large language models to craft distractors with the rules.

The interfaces of the Generate stage are shown in Fig. 6 and Fig. 7. Users can generate multiple-
choice questions targeted at different levels with the knowledge graphs created in previous stages.
To help users identify the knowledge gap between students, we allow them to customize the options
by specifying keys and distractors. Yet, they can also proceed without specifying keys or distractors
in the question generation stage. Prior studies argue that coming up with distractors is considered a
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A

B

C

Fig. 6. In the Generate stage, TreeQuestion provides support for key and distractor generation based on
the relationships gathered in the knowledge graph. Instructors can generate (A) key statements indicating
correct options and (B) distractor statements indicating distracting options by (C) selecting proper question
templates so as to control the options in the multiple-choice questions.

difficult task in question generation tasks for users [56]. We hence leverage large language models
to generate potential distractors based on the triplets of subject, predicate, and object obtained
in the Validate stage. Reasonable distractors for multiple-choice questions should be incorrect
in content but relevant to the questions. We provided multiple question templates curated from
online multiple-choice questions3 to guide potential distractor generation. Examples of the question
templates are also demonstrated in Fig. 6.

After specifying potential keys and distractors, users can label the concepts and the levels they
want to include in the questions after choosing the keys and distractors provided in previous steps.
3The questions are from chegg.com [11]
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A

B C

Fig. 7. In the Generate stage, TreeQuestion enables teachers to (A) customize keys and distractors in the
question; (B) specify the concepts and levels to generate the question; (C) organize the questions at different
levels into certain structures.

TreeQuestion then calls large language models to generate one multiple-choice question at the
specified level in Bloom’s Taxonomy. The generated question will be displayed in the left panel of
the interface where users can further modify the stems, options, and answers of the questions.

After obtaining satisfactory questions, users can save them as question nodes in the right panel of
the interface. TreeQuestion will arrange the generated questions in a tree-like structure according
to the concept and level corresponding to the question. In this manner, TreeQuestion can generate
a full list of questions simply through a pre-order traversal of the tree where questions of related
concepts are organized based on their corresponding levels. Users can also update or delete any
node or edge of questions in the interface thus changing the order of questions in the generated
question list.
In the Generate stage, large language models are instructed to generate plausible keys and

distractors as well as generate multiple-choice questions based on the keys and distractors. Both
keys and distractors are generated from the relations consisting of subject, predicate, and object
from the knowledge graphs in the Validate stage. To generate plausible distractors according to
the question templates provided in the interface, we also split the prompting process into two
stages. First, we prompted large language models to generate rules for distractor creation. Then, we
instructed the models to generate appropriate distractors based on the rules. Examples of the input
and output for distractor generation are shown in Table 4. Users can select relevant templates based
on their understanding to guide the generation of distractors. With keys or distractors specified,
we prompt large language models to compose specific questions just with these keys or distractors.
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A Network Security

Q.1: Which kinds of security protection activities should be be�er done by symmetric key encryption techniques? Which should be be�er 
done by public-key encryption techniques?
Q.2: What is the di�erence between a message authentication code and a one-way hash function? In what ways can a hash value be 
secured so as to provide message authentication?

B Computer Organization

Q.3: What e�ect does a cache and main memory have on a computer with two or more CPU chips?
Q.4: Di�erentiate CISC and RISC Architecture. Why does ARM use RISC architecture speci�cally?

C Data Structures

Q.5: Describe the algorithms used in solving mazes including Prim's Algorithm and Kruskal's Algorithm. How are they di�erent from 
each other?
Q.6: Explain the di�erences between heap and stack. What are they used for in terms of memory?

Fig. 8. Open-ended questions used in the evaluation study to collect students’ responses. Our focus lies in
conceptual questions in disciplines like network security, computer organization, and data structures within
computer science.

6 SYSTEM IMPLEMENTATION
We implement TreeQuestion as a full-stack web application with a back-end written in Django4 and
a front-end written in React.js5. The front-end of TreeQuestion is deployed through DigitalOcean6,
and the back-end server is deployed as an AWS EC2 instance7. TreeQuestion uses gpt-3.5-turbo8
API provided by OpenAI for all the large languagemodel services. The gpt-3.5-turboAPI provides
tunable parameters such as the degree of randomness. TreeQuestion used the gpt-3.5-turbo
engine, whichwas initially released onMay 24, 2023.We used the default settings with a temperature
of 1. All the API calls within TreeQuestion are in zero-shot settings without finetuning.

7 EVALUATION STUDY
We conducted two IRB-approved studies to evaluate TreeQuestion. We collected students’ responses
to matched pairs of questions in certain fields of computer science through an online study to
validate the effectiveness of multiple-choice questions generated from TreeQuestion. We also
investigated teachers’ experience in generating multiple-choice questions with TreeQuestion to
understand the efficiency of TreeQuestion in question generation.

7.1 Evaluating Students’ Responses
To understand the effectiveness of the multiple-choice questions generated by TreeQuestion in
assessing learning outcomes, we conducted a study on Amazon Mechanical Turk9 to evaluate
students’ performance on both multiple-choice questions generated by TreeQuestion and open-
ended questions.

4https://www.djangoproject.com/
5https://react.dev/
6https://www.digitalocean.com/
7https://aws.amazon.com/
8https://platform.openai.com/docs/models/gpt-3-5
9https://www.mturk.com/
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7.1.1 Question Design. As suggested by prior work [58], we adopted matched pairs of questions
to compare students’ performance on both open-ended questions and multiple-choice questions
generated by TreeQuestion. We conducted this study within the field of computer science. We
collected open-ended questions in different college-level computer science courses from Chegg [11].
Three of our authors cross-validated these collected open-ended questions to make sure that: (1)
the questions and answers provided are accurate within the corresponding disciplines; and (2) the
questions are suitable for knowledge assessment. Examples of open-ended questions have been
shown in Fig. 8.

Considering that different teachers have different expertise and preferences for designing ques-
tions, three of our authors created themultiple-choice questions for knowledge assessment following
the standard procedure below. We created the multiple-choice questions based on the answers
to each open-ended question to ensure that both the multiple-choice questions and open-ended
questions can assess similar knowledge components [34]. The answers to each open-ended question
were segmented by three of our authors into distinct sections based on the knowledge component
involved in the question. We then generated the multiple-choice questions with the help of Tree-
Question by matching the segmented sections to similar keys provided in the Generate stage. The
generated questions are distributed evenly across different levels of Bloom’s Taxonomy.

7.1.2 Study Implementation. We recruited participants from Amazon Mechanical Turk located
in the US to collect responses to the matched pairs of open-ended questions and multiple-choice
questions in a survey created by Qualtrics10. Participants were required to have studied a college-
level course covering the knowledge to be tested in the question pairs. In this study, participants
answered the open-ended questions first because we did not want the automatically generated
multiple-choice questions to bias their answers. Participants were not allowed to modify their
open-ended question answers after they had started answering the multiple-choice questions. The
task took roughly 10 minutes to complete. Participants were compensated with $2 for their time.
We invited three teachers from an R1 institution in the US to collectively grade the responses

collected from the student participants. All the teachers have teaching experience in the institution
and have passing knowledge in the related fields. For multiple-choice questions, there is only one
correct answer to each question. Students were given 1 if their answers were correct and 0 if their
answers were incorrect. For each open-ended question, we used a strict grading criterion with a total
score of 10 points. For each segmented section in the answers, we collectively determined analytic
rubrics to grade the open-ended questions following the guidance proposed in prior works [4, 50].
We also set the total scores of each open-ended question to 10 points. We assigned similar points
to each segmented section in the answers, which is proportional to the corresponding multiple-
choice questions testing similar knowledge. For each segmented section, we divided potential
responses into three to five levels from unsatisfactory to satisfactory, depending on different point
values. For example, for the section “Why does ARM use RISC architecture specifically?”, we gave
students full points if they could justify the choice of RISC architecture for ARM processors with a
comprehensive and well-structured argument without missing important factors. In contrast, we
gave students no points if they failed to provide any reasonable explanation or offered incorrect
reasoning for ARM’s choice of RISC architecture. To estimate the time needed to grade open-ended
questions, we randomly sampled 10 responses to these open-ended questions. Participants spent an
average of 91.6 seconds (std. = 25.8, N = 30) to grade each response to these open-ended questions.
Each teacher participant was compensated with a $30 Gift Card.

10https://www.qualtrics.com/
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Number Open-Ended Question Multiple-Choice Question
avg. std. avg. std.

Q.1 3.81 1.64 4.44 1.22
Q.2 3.68 2.18 4.00 2.57
Q.3 4.13 2.47 4.38 2.83
Q.4 3.56 2.48 3.69 2.44
Q.5 3.44 1.90 3.62 1.49
Q.6 3.75 1.80 3.94 2.51

Table 5. Comparison of participants’ scores on both open-ended questions and multiple-choice questions. We
use a 10-point scale for both formats of questions. Results from repeated measures ANOVA show that there is
no main effect of questions, indicating that students can achieve comparable performance on TreeQuestion-
generated multiple-choice questions and open-ended questions.

7.1.3 Findings. A total of 96 participants (46 identified as male, 50 identified as female) completed
the task. The average age of participants was 33.03 (𝑠𝑡𝑑. = 8.83, 𝑁 = 96). On average, each pair
of questions created was answered by 16 different participants and each discipline of questions
was answered by 32 different participants. All participants’ answers to open-ended questions were
graded by three of the teachers. Three of our teacher participants collectively decided the scores
for answers to open-ended questions.

For the 10 multiple-choice questions generated by TreeQuestion, participants achieved an average
accuracy of 0.40(𝑠𝑡𝑑. = 0.26, 𝑁 = 96). Table 5 shows the results of students’ scores on both open-
ended questions and multiple-choice questions. We performed a repeated measures ANOVA on
the scores of students on open-ended questions and multiple-choice questions. Results indicated
a significant main effect of students (𝐹 (1, 95) = 7.96, 𝑝 < 0.01) with no main effect of questions
(𝐹 (1, 95) = 3.58, 𝑝 = 0.06). Such results also suggest that students can achieve comparable learning
outcomes in TreeQuestion generated multiple-choice questions in comparison with traditional
open-ended questions.

7.2 Investigating Teachers’ Experience
To assess whether TreeQuestion could enhance teachers’ efficiency in creating appropriate questions
for knowledge assessment across different contexts, we conducted a study with participants from
various disciplines in computer science. These participants generated both open-ended questions
without TreeQuestion and multiple-choice questions with TreeQuestion based on their personal
expertise and experience.

7.2.1 Participant Recruitment. We recruited participants through social media (including mailing
lists and social groups of professors). 10 course instructors (5 identified as male, 5 identified as
female) at an R1 institution participated in the study. All participants had participated in teaching a
college-level course and had designed exercise or quiz questions to assess students’ knowledge.
They were from disciplines within computer science including network security, machine learning,
database, etc.

7.2.2 Procedure. Participants were asked to select the concepts they wanted to test within their
familiar disciplines in the quiz before the study session. All participants experienced both multiple-
choice questions and open-ended questions to compare the experience of generating questions in
both forms. During the session, participants were asked the share their screens the whole time. We
first got participants’ consent, and then gave a demo on how to use the TreeQuestion system.
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Participants had 30 minutes to design open-ended questions and multiple-choice questions with
or without TreeQuestion. Participants were asked to imagine that they were assigning a quiz
in a class and designing quiz questions to assess student knowledge. They were told that both
the open-ended questions and multiple-choice questions should test similar knowledge related to
the concepts they specified at the beginning of the study. After this, we required the participants
to annotate the answers to each question. For open-ended questions, participants were asked
to provide detailed explanations to evaluate students’ answers. For multiple-choice questions,
participants were asked to give the correct options for each question.

At the end of the task, participants were asked to review the automatically generated questions
and share their experiences when creating these questions. We specifically asked them to comment
on the knowledge coverage, content accuracy, cognitive levels, and perceived efficiency and effec-
tiveness of TreeQuestion. The study session lasted for 45-60 minutes via Zoom. Participants were
compensated with a $20 Gift Card.

A Open-Ended �estions

B Multiple-Choice �estions

�estion: Di�erentiate over��ing and under��ing in machine learning. Explain potential techniques to address over��ing. Justify with 
reasons.
Answer: Over��ing is the scenario where the model performs well on samples from the training data but is unable to generalize to 
unseen samples. If a model over�ts, it is said to have high variance. Under��ing is the scenario where the model fails to perform well on 
samples from the training data. If a model under�ts, it is said to have high bias. Some techniques to address over��ing include L1 and L2 
regularization, using dropout or reducing the number of parameters in the model. 

�estion: In the �eld of machine learning, 
what does over��ing refer to?
A. Over��ing is when a model accurately 
predicts new data, leading to poor perfor-
mance on the training data.
B. Over��ing is when a model learns the 
noise or random �uctuations in the train-
ing data and fails to generalize to new, 
unseen data.
C. Over��ing is when a model underper-
forms on both the training and test data 
due to a lack of complexity in the model.
D. Over��ing is when a model performs 
well on the training data but fails to predict 
new data accurately.
Answer: B

�estion: Imagine you are working on a 
classi�cation problem and have built a 
complex model with millions of parameters. 
You notice that the model performs 
extremely well on the training data but 
fails to generalize to new, unseen data. 
What technique can you use to address this 
issue?
A. Principal component analysis and 
whitening
B. Independent component analysis
C. Regularization techniques
D. Randomly reshu�ing the training and 
testing data
Answer: C

�estion: How can L1 and L2 regulariza-
tion, along with dropout, be e�ectively used 
to address over��ing?
A. L1 and L2 regularization and dropout 
are commonly used to increase model 
complexity and improve model perfor-
mance.
B. L1 and L2 regularization and dropout 
are techniques used to randomly remove 
data points from the training set to reduce 
the risk of over��ing.
C. L1 and L2 regularization are regulariza-
tion techniques that add a penalty term to 
the loss function, encouraging the model to 
have smaller weights. Dropout is a tech-
nique that randomly drops out a fraction of 
the neurons during training.
D. L1 and L2 regularization, as well as 
dropout, are techniques used to increase the 
capacity of the model by adding more 
layers and neurons.
Answer: C

Fig. 9. Examples of paired questions designed and answers labeled by the participants in our evaluation study.
Participants were told that both open-ended questions and multiple-choice questions should test similar
knowledge related to the concepts they specified before the study.

7.2.3 Findings. Three of our authors watched the user study recordings to label the time spent by
the participants on each part. Then, the recordings were transcribed and analyzed using affinity
diagrams. The open-ended questions participants generated in our study are demonstrated in
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Participants Gender Discipline Open-Ended Questions

P1 Male Data
Structures

Suppose you have to design an algorithm for
checking if for a given string every opening
parentheses has a corresponding closing
parentheses. Would you use a stack data
structure or a queue data structure for this?

P2 Female Network
Security

What are the strengths and weaknesses of
symmetric key cryptography? Give an example
of where this type of cryptography is used.

P3 Male Machine
Learning

What is overfitting? How does it differ from
underfitting? What are some techniques to
address overfitting?

P4 Female Database What are the advantages and disadvantages of
relational databases?

P5 Female Game Theory
How does complete information or incomplete
information affect a rational person’s behavior in
a dynamic game?

P6 Male Operating
Systems

What is the major difference between a thread
and a process?

P7 Female Data
Structures

Suppose I have a graph and I want to use a
search method to find the nearest path from node
A to node B. Should I use a depth-first search or a
breadth-first search?

P8 Male Database
What would happen if a database session is
terminated before ending the transaction? How
to ensure any unwanted result is not obtained?

P9 Female Discrete
Mathematics

What are the connections and differences
between group, ring, and field in discrete
mathematics?

P10 Male Machine
Learning

Explain the trade-offs between batch gradient
descent and stochastic gradient descent.

Table 6. Open-ended questions that participants created during the study cover different disciplines within
computer science.

Table 6. Participants used the TreeQuestion system to create a set of multiple-choice questions that
cover similar ranges of knowledge compared with these open-ended questions.

On average, each participant spent 281.9 seconds (𝑠𝑡𝑑. = 115.6, 𝑁 = 10) to create an open-ended
question and 96.7 seconds (𝑠𝑡𝑑. = 27.5, 𝑁 = 10) to create a corresponding set of multiple-choice
questions with TreeQuestion, which indicates that TreeQuestion only requires around one-third of
the time to create a corresponding set of multiple-choice questions compared with open-ended
questions. Combined with the estimated data in the previous study, suppose there is a class with 20
students, it will take 2113.9 seconds to create, annotate, and grade all the open-ended questions.
However, it will take 96.7 seconds for multiple-choice questions with TreeQuestion since they can be
automatically graded, which is around 4.6% of the time needed by open-ended questions. Examples
of the matched pairs of open-ended questions and multiple-choice questions are illustrated in 9.
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Further, we present our findings from interviews as below.
TreeQuestion provided abundant knowledge that could provide useful insights for ques-
tion generation. All the participants were satisfied with the coverage of the generated questions
and expressed that they would love to use the generated questions for knowledge assessment in
exams or quizzes. We found that the background knowledge provided by TreeQuestion can enhance
the comprehensiveness of questions from different perspectives. By specifying different levels from
Bloom’s Taxonomy in the Explore stage, P9 commented that “The content generated by TreeQuestion
is comprehensive enough for me to use. I do not think TreeQuestion missed any important points.” Some
participants held the view that TreeQuestion could generate knowledge that may be challenging for
them to think of during a short period. P4 also mentioned the benefits of TreeQuestion by saying
that “I can obtain extensive background knowledge without initiating too much information. This
approach also saves me a significant amount of time by eliminating the need to incorporate external
content, such as textbooks, into the system.” In the meantime, the human-AI collaborative approach
also motivated participants to provide additional information that could prove beneficial for the
generation of questions. P6 told us that “There are potential clues and concepts to help me come up
with more relevant knowledge.”
TreeQuestion produced rich distractor choices that could bring great convenience.Most
participants expressed that providing different types of distractors based on question templates
would be very helpful for them. We found that TreeQuestion could enhance the quality of generated
options for various reasons. Participants noted that the interactive interface in the Validate stage
enabled them to correct inaccuracies in knowledge generated by large languagemodels. For example,
P3 efficiently rectified a mistake made by the models, which incorrectly stated that "outfitting"
means failing to generalize to training data instead of test data. Although some participants
acknowledged that distractors may not be useful in all cases, they still value the ability to control
the distractors before generating questions. By specifying the templates for option generation,
participants thought that they could select the options that are most relevant to the questions. They
witnessed several cases where out-of-context information surfaced without proper control over the
options, potentially diminishing the quality of the questions. By controlling the options beforehand,
TreeQuestion enabled teachers to efficiently craft multiple-choice questions with high-quality
distractors. Just as P10 told us, “I think the most efficient thing for me would be getting a large
number of distractors. Writing a question is always hard, and I like the system that helps me write
everything quickly to fit into the questions.”
TreeQuestion provided flexible choices to tune the difficulty of questions. TreeQuestion
allowed participants to gain an overview of the difficulty distributions of questions, which could
inspire them to design more comprehensive question sets for knowledge assessment. Participants
first found that it is very time-saving to just select from a batch of questions at different levels
in Bloom’s Taxonomy which were generated from large language models. P10 said that “When I
was writing the exam, I was not fully aware of various levels of questions. I like the option of almost
tuning the difficulty level of the questions. It would be great to see the full spectrum at first sight.”
While there were instances where the specified keys or distractors did not perfectly align with
Bloom’s Taxonomy levels, participants felt the generated questions had come close enough to their
expectations. In fact, P4 argued that it might not be necessary to have all the questions precisely
mapped to different levels in Bloom’s Taxonomy. Many manually-created questions in exams
or quizzes usually involve more than one level from Bloom’s Taxonomy. Instead, a system like
TreeQuestion that could provide them with questions at various difficulty levels would be helpful
enough. Participants also emphasized the value of real scenarios and examples embedded in the
questions, expressing satisfaction with the questions generated at higher difficulty levels. They
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agreed that incorporating plausible distractors with intricate scenarios would necessitate students
to engage in more complex thinking processes to arrive at the correct answer. As mentioned
by P3, “The answers are not straightforward, I would say. It would be difficult for everyone to see
the differences if they do not have in-depth knowledge.” Combining all these factors, most of our
participants believed that TreeQuestion could provide potential opportunities to generate questions
for systematic knowledge assessment.

8 LIMITATIONS
8.1 Limitations of Bloom’s Taxonomy
TreeQuestion leverages Bloom’s Taxonomy to instruct large language models to generate multiple-
choice questions involving different cognitive processes. It is worth noting that there are several
inherent limitations of Bloom’s Taxonomy in the context of question generation. First, in many
multiple-choice questions, different cognitive processes such as remembering, understanding,
or applying would occur simultaneously. However, due to the hierarchical nature of Bloom’s
Taxonomy, it would be problematic to assume each category is discrete. Second, new kinds of
learning which are required and have been widely included in many real-world tests do not easily
fall into Bloom’s or the revised cognitive taxonomy. For example, teachers may consider testing
the abilities of “learning how to learn”, “leadership and interpersonal skills”, or “communication
skills” in their questions as suggested by previous work [19]. Such kinds of tests have gone beyond
the scope of Bloom’s Taxonomy. Future research could incorporate other theories, such as Fink’s
Taxonomy of Significant Learning [19], as alternatives to Bloom’s Taxonomy.

8.2 Applicability of the GeneratedQuestions
Although all the participants successfully created multiple-choice questions in the evaluation
studies, there are certain limitations of the questions generated by TreeQuestion. First, while
TreeQuestion can generate multiple-choice questions spanning various cognitive levels within
Bloom’s Taxonomy, it is still challenging for large language models to create questions that engage
more complicated cognitive processes. It is widely acknowledged that large language models still
lack satisfactory capabilities in complex reasoning. In the evaluation study, participants expressed
concerns that sometimes the generated questions may require little complex reasoning, which can
not fully meet their purposes in examination scenarios. Second, it is possible that the background
knowledge generated in TreeQuestion may not be able to satisfy teachers working in all the subjects,
especially for those with a lot of professional terms that might be rare in large language models’
training data. We anticipate that future systems, potentially utilizing finetuned large language
models or employing other finely crafted prompts tailored to specific domains, will enhance the
applicability of generated questions.

9 DISCUSSIONS AND FUTUREWORK
9.1 Reshaping the Power Imbalance Caused by Generative AI
Cheating risks have become a growing concern in education with the emergence of generative AI.
While teachers still need to invest amounts of time in creating and evaluating the questions, students
could effortlessly generate human-like answers with generative AI. As an LLM-powered tool for
learning outcome assessment, TreeQuestion attempts to remedy such a power imbalance with
generative AI. Yet in this teacher-student game, we believe there are still potential opportunities
that could transform the power between teachers and students. It is acknowledged that multiple-
choice questions, even if well-designed, are still prone to cheating [40]. Multiple-choice questions
generated by large language models can also be easily answered by similar models. Yet, leveraging
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large language models, future work could potentially reduce cheating opportunities or increase
cheating cost leveraging personalization and randomization techniques [63]. We envision that
future work can potentially make dynamic question generation of teachers much easier when
configured with strategies for personalization and randomization. However, in the age of generative
AI, we also call for a combination of different strategies including reducing the opportunities,
incentives/pressures, and attitudes to cheating to reshape the power imbalance between teachers
and students.

9.2 Accelerating Student Participation in Assessment
TreeQuestion aims to enable teachers to assess students’ conceptual learning outcomes through
structured multiple-choice questions. While TreeQuestion provides an innovative solution for
enhancing the efficiency of knowledge assessment for teachers, it may not be optimized for students.
However, we believe it might not be necessary to have students go through all the multiple-choice
questions to accurately infer students’ knowledge state. There is still a large design space for
optimizing student participation based on the tree structure of questions. We envision that
teachers can also configure future systems with heuristic-based strategies that enable students
to skip familiar questions and repeat unfamiliar questions based on their performance, allowing
teachers to elicit students’ learning outcomes more efficiently [25]. As a result, students can
be provided with more targeted multiple-choice questions, thus enhancing their efficiency in
participation.

9.3 Designing Scalable Learning with Generative AI
While TreeQuestion provides teachers with an innovative assessment solution, it is also equally
important to consider the design of learning. As suggested by prior work [4], goal-directed practice
coupled with targeted feedback is critical to learning. Many studies have shown that feedback
interventions improve learning more than non-feedback ones. More frequent feedback leads to
more efficient learning because it helps students stay on track. But in reality, creating deliberate
practice opportunities with regular feedback necessitates meticulous design and substantial effort
from teachers. Since TreeQuestion can offer abundant opportunities for students to engage their
knowledge and skills in answering the questions, we envision future systems to provide instant
information to students about their performance to guide their future learning. Large language
models also have great promise in alleviating the burden on teachers when it comes to generating
detailed feedback based on diverse performances. For instance, when students make mistakes, we
anticipate that future systems will not only offer detailed explanations for correct answers but also
generate helpful tips for improving learning behaviors simultaneously.

10 CONCLUSION
This paper introduces TreeQuestion, a human-in-the-loop system that assists teachers in generating
a set of structured multiple-choice questions to replace knowledge-based open-ended questions.
In developing TreeQuestion, we propose a method for generating multiple-choice questions sys-
tematically, which can be used to assess students’ fine-grained conceptual learning outcomes. We
also introduce a novel programming pattern, Explore-Validate-Generate, to control imperfect large
language models in creating diverse multiple-choice questions with correct answers. We evaluate
TreeQuestion with 96 students and 10 teachers. Our results show that students can achieve similar
performance on open-ended questions manually graded by teachers and multiple-choice questions
generated by TreeQuestion. Meanwhile, compared with manually-crafted open-ended questions,
TreeQuestion could significantly save teachers’ efforts in generating and evaluating multiple-choice
questions. We estimate that utilizing multiple-choice questions with TreeQuestion in an assumed
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class of 20 students requires merely 4.6% of the time compared with the time required for evaluating
learning outcomes using open-ended questions.
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A EXAMPLE PROMPTS
In this section, we provide more example prompts targeted at different levels in Bloom’s Taxonomy
for background knowledge generation in Table 7. All the explanations of different levels in Bloom’s
Taxonomy are extracted from existing literature [5]. All the inputs listed in Table 7 are used to
generate the learning objectives related to the concept. The outputs will then be used to generate
the background knowledge as described in section 5.

Input
Generate some statements regarding the learning objectives of
symmetric encryption in the area of cybersecurity. The statements
should cover the "remember" level in Bloom’s Taxonomy. Each statement
should start with a verb.
The definitions of the "remember" level in Bloom’s Taxonomy are:
"Remember" means retrieving relevant knowledge from long-term memory.
Cognitive processes in the category of "remember" include recognizing
and recalling.
Recognizing means locating knowledge in long-term memory that is
consistent with the presented material. Recalling means retrieving
relevant knowledge from long-term memory.

(a) This example prompt facilitates the generation of background knowledge at the "remember" level for
"symmetric encryption." The first part instructs LLM to produce statements about the target concept at the
"remember" level in Bloom’s taxonomy. The second part provides definitions of Bloom’s Taxonomy levels and
the cognitive processes involved. Cognitive processes in the category of “remember” include recognizing
and recalling. Both the definitions and hierarchical relationships are adapted from [5].

Input
Generate some statements regarding the learning objectives of
symmetric encryption in the area of cybersecurity. The statements
should cover the "understand" level in Bloom’s Taxonomy. Each
statement should start with a verb.
The definitions of the "understand" level in Bloom’s Taxonomy are:
"Understand" means construct meaning from instructional messages,
including oral, written, and graphic communication. Cognitive processes
in the category of "understand" include interpreting, exemplifying,
classifying, summarizing, inferring, comparing, and explaining.
Interpreting means changing from one form of representation to another.
Exemplifying means finding a specific example or illustration of a
concept or principle. Classifying means determining that something
belongs to a category. Summarizing means abstracting a general theme
or major point(s). Inferring means drawing a logical conclusion from
the presented information. Comparing means detecting correspondences
between two ideas, objects, and the like. Explaining means constructing
a cause-and-effect model of a system.

(b) Example prompts at the “understand” level. Related cognitive processes include interpreting, exempli-
fying, classifying, summarizing, inferring, comparing, and explaining.
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Input
Generate some statements regarding the learning objectives of
symmetric encryption in the area of cybersecurity. The statements
should cover the "apply" level in Bloom’s Taxonomy. Each statement
should start with a verb.
The definitions of the "apply" level in Bloom’s Taxonomy are:
"Apply" means carrying out or using a procedure in a given situation.
Cognitive processes in the category of "apply" include executing and
implementing.
Executing means applying a procedure to a familiar task. Implementing
means applying a procedure to an unfamiliar task.

(c) Example prompts at the “apply” level. Related cognitive processes include executing and implementing.

Input
Generate some statements regarding the learning objectives of
symmetric encryption in the area of cybersecurity. The statements
should cover the "analyze" level in Bloom’s Taxonomy. Each statement
should start with a verb.
The definitions of the "analyze" level in Bloom’s Taxonomy are:
"Analyze" means breaking material into its constituent part and determine
how the parts relate to one another and to an overall structure or purpose.
Cognitive processes in the category of "analyze" include differentiating,
organizing, and attributing.
Differentiating means distinguishing relevant from irrelevant parts or
important from unimportant parts of the presented material. Organizing
means determining how elements fit or function within a structure.
Attributing means determining a point of view, bias, values, or intent
underlying the presented material.

(d) Example prompts at the “analyze” level. Related cognitive processes include differentiating, organizing
and attributing.

Input
Generate some statements regarding the learning objectives of
symmetric encryption in the area of cybersecurity. The statements
should cover the "evaluate" level in Bloom’s Taxonomy. Each statement
should start with a verb.
The definitions of the "evaluate" level in Bloom’s Taxonomy are:
"Evaluate" means make judgments based on criteria and standards.
Cognitive processes in the category of "evaluate" include checking and
critiquing.
Checking means detecting inconsistencies or fallacies within a process
or product; determining whether a process or product has internal
consistency; and detecting the effectiveness of a procedure as it is
being implemented. Critiquing means detecting inconsistencies between a
product and external criteria, determining whether a product has external
consistency; and detecting the appropriateness of a procedure for a given
problem

(e) Example prompts at the “evaluate” level. Related cognitive processes include checking and critiquing.
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Input
Generate some statements regarding the learning objectives of
symmetric encryption in the area of cybersecurity. The statements
should cover the "create" level in Bloom’s Taxonomy. Each statement
should start with a verb.
The definitions of the "create" level in Bloom’s Taxonomy are:
"Create" means putting elements together to form a coherent or functional
whole; reorganizing elements into a new pattern or structure. Cognitive
processes in the category of "create" include generating, producing, and
planning.
Generating means coming up with alternative hypotheses based on criteria.
Producing means inventing a product. Planning means devising a procedure
for accomplishing some task.

(f) Example prompts at the “create” level. Related cognitive processes include generating, producing, and
planning.

Table 7. Example prompts with the concept “symmetric encryption” in the field of “cybersecurity” targeted
at the different levels in Bloom’s Taxonomy in the Explore stage. With the same concepts and fields, we only
change the detailed explanations of different levels and related cognitive processes in Bloom’s Taxonomy if
users specify different levels.
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