
Providing Architectural Support for Building
Privacy-Sensitive Smart Home Applications

Haojian Jin
haojian@cs.cmu.edu

Carnegie Mellon University
Pittsburgh, PA, USA

Swarun Kumar
swarun@cmu.edu

Carnegie Mellon University
Pittsburgh, PA, USA

Jason Hong
jasonh@cs.cmu.edu

Carnegie Mellon University
Pittsburgh, PA, USA

(a) conventional cloud-based architecture

Face

detection

Hello Visitor

cloud serverssend the raw image

through internet

HellHellHello Vio Vio Visitositosito

Motion

detection

proprietary sensors

Face

extraction

send cropped face images 

through internet

Hello Visitor

(b) peekaboo software architecture

retrieve

image

detect

face

crop 

face

send2

cloud

provider inference

filter network

streaming

Motion

detection

a user controlled hub

Face

extraction

non-proprietary

sensors

(c) peekaboo reusable chainable operators

cloud servers

Figure 1: Peekaboo factors out the repetitive data preprocessing tasks (e.g., face detection) from the cloud side onto a smart home hub
(a & b), supports them as a set of reusable, chainable operators (c), and then runs them over the sensor data before they flow to cloud
services (and out of the users’ control). In doing so, Peekaboo reduces unnecessary data egress, lowers the barriers for app developers,
and offers users a unified and centralized nexus for privacy awareness and control.

ABSTRACT
In this thesis, we plan to introduce a new IoT app develop-
ment framework named Peekaboo, which aims to make it
much easier for developers to get the granularity of data
they actually need rather than always requesting raw data,
while also offering architecture support for building privacy
features across all the apps. Peekaboo’s architectural design
philosophy is to factor out repetitive data pre-processing
tasks (e.g., face detection, frequency spectrum extraction)
from the cloud side onto a user-controlled hub, and support
them as a fixed set of open source, reusable, and chainable
operators. These operators pre-process raw data to remove
unneeded sensitive user information before the data flow to

This work is licensed under a Creative Commons Attribution International 4.0 License.

UbiComp/ISWC ’20 Adjunct, September 12–16, 2020, Virtual Event, Mexico © 
2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8076-8/20/09.
https://doi.org/10.1145/3410530.3414328

the cloud (and out of the users’ control), thus reducing data
egress and many potential privacy risks for users. Further,
all the IoT apps built with Peekaboo share a common struc-
ture of the chainable operators, making it possible to build
consistent privacy features beyond individual apps.

CCS CONCEPTS
• Human-centered computing Human computer interac-
tion (HCI); • Security and privacy Human and societal
aspects of security and privacy; • Software and its engi-
neering Software architectures.

KEYWORDS
Ubiquitous computing; privacy; toolkit; software architec-
ture; smart home; IoT app development

ACM Reference Format:
Haojian Jin, Swarun Kumar, and Jason Hong. 2020. Providing Ar-
chitectural Support for Building Privacy-Sensitive Smart Home
Applications. In Adjunct Proceedings of the 2020 ACM International
Joint Conference on Pervasive and Ubiquitous Computing and Pro-
ceedings of the 2020 ACM International Symposium on Wearable
Computers (UbiComp/ISWC ’20 Adjunct), September 12–16, 2020,

212

https://doi.org/10.1145/3410530.3414328
https://creativecommons.org/licenses/by/4.0/


UbiComp/ISWC ’20 Adjunct, September 12–16, 2020, Virtual Event, Mexico Jin et al.

Virtual Event, Mexico. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3410530.3414328

1 PROBLEM STATEMENT
A major challenge for deploying smart home apps is earning
the trust of end-users [7, 11, 16]. For many smart home apps,
such as smart speakers, cameras, thermostats, and occu-
pancy sensors, the "brains" of these systems are in the cloud.
On-board sensors collect data and send them to remote
servers, where primary functionality (such as commands,
analytics, or sharing) typically happen. This kind of cloud-
based software architecture reduces the cost of IoT hardware,
allows running computationally expensive algorithms, eases
system/feature upgrades, and allows for subscription-based
business models. However, a major drawback of this kind
of architecture is privacy. Users have little control over the
data transmission process, and in many cases, must either
accept the fact that the proprietary hardware may collect
raw data continuously or simply not purchase these smart
devices at all [7].
Earning the trust of end-users is challenging for at least

two reasons. First, protecting privacy in a smart home is
hard because of the fluid and dynamic nature [8, 15, 17]. For
example, privacy can be leaked from any of the distributed
and heterogeneous sensor sources. An elderly person may
be willing to install a 24x7 camera, sacrificing the privacy
for the chance to live independently and safely [1, 18]. De-
signing a practical privacy-sensitive app requires a deep un-
derstanding of the use scenario and significant efforts [12].

Second, while privacy is a fundamental right to users, we
have to acknowledge that it is not the “core value” on par
with functionality, security, reliability, and the cost for devel-
opers [9]. Privacy features in smart home apps are typically
built using an ad-hoc process. App developers choose what-
ever technique is easiest to implement, usually dictated by
the existing software architecture and sensors (see §2).
This thesis aims to make privacy-sensitive app develop-

ment easier by offering a new kind of system architecture
for smart home apps. The proposed framework, Peekaboo,
will allow developers to expend less effort on the common
privacy features across most smart home apps and focus
their energies on the primary goal of these apps, that is,
enabling the smart automation through the sensor data.

2 BACKGROUND & RELATED WORK
In this section, we review previously built smart home appli-
cations to understand how they incorporate privacy-relevant
features. Through a comprehensive analysis of published
academic and industrial solutions spanning three decades,
we find three types of paradigms1.
1These paradigms are non-exclusive. Each paradigm comes with some
trade-offs. To address some trade-offs, many smart home solutions use a

The end-to-end development (e.g., Nest Camera, respon-
sive environment [14], smart microwave [13]) is the most
common approach nowadays, in which developers build the
proprietary hardware and a complete stack of software from
the firmware to the cloud programs and mobile apps. The
manufacturer can control how every aspect of the product
works, making it possible to optimize user experience (e.g.,
setup and management), power consumption, and hardware
utilization. Developers can profit from selling the physical
hardware (e.g., Nest Camera) and offering add-on services
(e.g., Nest Aware [5]). The privacy model for these prod-
ucts rely on the self-regulation. Products may offer some
privacy control and users can operate based on the available
options. For example, Nest Cameras allow users to turn off
the camera during a specified time period.
An alternative approach is building apps through the

interoperability protocols (e.g., IFTTT, Apple HomeKit),
which stitches cross-platform services through network pro-
tocols (e.g., Apple MFi). Since this paradigm does not control
the privacy policies of third parties, it offers limited pri-
vacy protection. For example, IFTTT encourages users to
ask questions to the service providers before disclosing their
personal information [10].
The capability abstraction approach (e.g., HomeOS [2],

Samsung SmartThing is built upon the interoperability pro-
tocols approach, which aims to construct a unified interface
for home technologies. HomeOS encapsulates the interop-
erability protocols into standard system APIs so that de-
velopers can develop smart home apps in a similar way
as mobile/PC app development. The privacy model for the
operating system approach still relies on app developer self-
regulation. But it improves the full-stack method because it
offers a centralized location for end-users to manage multi-
ple apps.
As we can see, the privacy features in existing develop-

ment frameworks are relatively limited, suffering from four
types of deficiencies:
• End-users have to trust the developers but have little ways
to check the real behavior of smart home products. All
three paradigms rely on the assumption that users have
to trust that companies will collect and use their data
properly.

• Smart home products often need to be individually man-
aged, and each comes with its unique privacy control
interface. Distributed privacy control imposes a manage-
ment challenge for users.

• Verifying the app behavior is a non-trivial tasks for third-
party auditors. Third party auditors play an important role
in today’s data privacy ecosystem. For example, Electronic

combination of multiple paradigms. For example, full-stack products are
often compatible with some interoperability protocols.

213

https://doi.org/10.1145/3410530.3414328
https://doi.org/10.1145/3410530.3414328


Providing Architectural Support for Building Privacy-Sensitive Smart... UbiComp/ISWC ’20 Adjunct, September 12–16, 2020, Virtual Event, Mexico

Frontier Foundation found that Ring shares a plethora of
customers’ personally identifiable information to third-
parties [3] and pushed Ring to offer a privacy control
interface for end users [4]. However, analyzing the privacy
behavior is a daunting task for all three paradigms.

• There is no mechanism for users to control the data flow
beyond the functionalities offered by the developers. A
contrasting example is the modern mobile permission sys-
tems (e.g., Android, iOS), which allow users to configure
whether an app has access to the data.

3 SYSTEM DESIGN
Our key insight is that cloud services do not need raw sensor
data for many IoT scenarios. Indeed, developers often need
to implement repetitive functions on the cloud back-end to
extract the desired data, costing unnecessary development
effort, bandwidth, and computational resources. For exam-
ple, to implement a “HelloVisitor” app on a video doorbell,
which recognizes the visitors in front of the door and per-
sonalizes welcome messages, developers need to implement
an algorithm to extract the image area containing a human
body before running a person recognition (Fig. 1).
Peekaboo factors out these common data preprocessing

tasks (e.g., audio activity detection, face detection, and fre-
quency spectrum extraction) from the cloud service side
onto the hub, supports them as a set of reusable, chainable
operators and then runs them over the sensor data before
they flow to cloud services (and out of the users’ control)
(Fig. 1). The sensors in Peekaboo first send collected data
to a trusted hub, and the hub preprocesses the data before
sending the data to developers’ servers. Here, the hub can
be any computing resource that is fully controlled by the
end-users, e.g., a raspberry pi, an old computer in the home,
or a shared EC2 instance in the cloud. This design offers
several unique benefits:
• Peekaboo can lower the barrier for smart home app devel-
opment, since developers can utilize these system-wide
reusable operators, alleviating the need to re-implement
functionality.

• Peekaboo reduces unnecessary data egress without pre-
venting developers from implementing planned features.
For example, "HelloVisitor" developers can request only
the face images instead of the raw picture, which may
capture other undesired information, e.g., the package on
the floor, the home address, and a parked vehicle.

• The basic unit of each hub program is reusable operators
with known semantics, making it possible to infer the real
app behavior at the content level. When a user installs
an app, Peekaboo can inform users of the required data
content (e.g., face images). After installation, Peekaboo can
show users what data content different apps are collecting

provider inference Filter Network Utility

pull

push

detect

recognize

spoof

noisify

block

post

publish

stream

convert

metadata

...extractemulate

Figure 2: The taxonomy of action primitives. The operators are
designed in a functional programming language fashion, where
each operator is a data action (i.e., a “verb” statement). Here, we
enumerate the common data actions across different operator
categories. Note the actions are independent with the data types.
For example, “face blurring” is the “noisify” action that applies
to the face data.

(e.g., face images have been sent to the HelloVisitor app
for X times).

• The hub becomes the gateway of all the outgoing net-
work traffic, offering a unified and centralized privacy
awareness and control for all the smart home apps.
The instantiation of Peekaboo software architecture will

contain three main components: a programming interface
allowing developers to build Peekaboo apps, a hub runtime
that enables content-based late bind and system optimiza-
tion, and program analyzers/rewriters to enable content-
based privacy features.

Programming Interface
A Peekaboo application consists of a lightweight and elemen-
tary hub program running on the hub and a more computa-
tionally expensive and sophisticated optional cloud program
running on developers’ servers. With Peekaboo, a developer
can implement a Peekaboo app in three steps: (1) connect the
operators into flows; (2) configure the operator properties;
and (3) implement the main program on the cloud.
The hub program is a connected graph of four types of

open-source operators (Fig. 2): provider, inference, filter, and
outgoing network, where each node corresponds to a verb
statement (e.g., detect face) and the connections between
operators are referring to the sensor data or derived data.
Figure 1(c) illustrates a hub program for the “HelloVisitor”
app. The provider operator (i.e., retrieve image) specifies the
data retrieval behavior (e.g., pull v.s. push, frequency, reso-
lutions) and gets raw sensor data from Peekaboo runtime.
The inference operator (i.e., detect face) analyzes the raw
data and derives content annotations. The filter operator (i.e.,
crop face) filters the sensor data based on the content anno-
tation. The outgoing network (i.e., send2cloud) is the only
operator that has outgoing network access, which sends the
data to the remote cloud.

214



UbiComp/ISWC ’20 Adjunct, September 12–16, 2020, Virtual Event, Mexico Jin et al.

Runtime
Although Peekaboo is a software-intensive framework, it
needs hardware to execute the hub programs, collect sensor
data, and overcome the hardware constraints. We cannot ig-
nore the hardware aspect of the total solution. This hardware
dependency of Peekaboo imposes two major challenges.
First, how can developers build smart home apps without

knowing the sensor placements? Setting up a smart home app
for a designated sensor is relatively straightforward. How-
ever, many apps (e.g., home occupancy statistics) require
collaborative input from sensors across the home [17]. Exist-
ing smart home solutions (e.g., Google Nest Aware) address
this issue by constructing a closed ecosystem and ask users
to configure the sensors through a location template (e.g., a
camera at the living room), which corners users into vendor
lock-in.
In contrast, Peekaboo runtime addresses this challenge

by offering content-based sensor late binding. Developers
only need to specify the requested data content type (e.g.,
occupancy data) as the input of the hub program. Peekaboo
offers a set of built-in drivers (also implemented through
reusable operators) to extract the occupancy data from appli-
cable sensors, such as a microphone, camera, accelerometers.
Peekaboo defers the sensor data binding until the moment
users install the app on the hub. If a user has a camera
installed in her living room and wants to install an app
that consumes the occupancy data, the Peekaboo runtime
will extract the occupancy data from the camera automat-
ically. By doing so, developers can build smart home apps
on non-proprietary hardware without knowing the sensor
placements.

Second, how much computing resources do users need to run
hub programs for a mid-size home?While Peekaboo only runs
the lightweight tasks on the hub, a smart home may involve
hundreds of sensors and thousands of apps. Peekaboo would
not be feasible if the computational resource can not scale.
In responding to this challenge, we plan to develop a hub
program aggregation technique to optimize the computation
resource utilization. Since all the hub programs are built
with reusable operators, we can merge the hub programs
and reuse the computed results across different apps on the
same sensor. So the computation cost for a given sensor is
capped.

Program Analysis for New Privacy Features
The design of reusable operators also makes Peekaboo apps
easier to analyze and rewrite, enabling many new privacy
features. First, as each hub program is defined by built-in op-
erators that have known semantics, we can statically analyze
the program to understand how the sensor data is processed
step by step. Through the static program analyzer, Peekaboo

can offer a privacy permission system at the content level.
For example, a user may configure a privacy policy that
"any face should not appear in any video streams from the
living room." The Peekaboo app store will prevent her from
installing any app requesting face data on certain camera
sensors.
Second, the functional programming model eliminates

external states, so we can analyze the real hub program
behavior by inspecting each operator’s input and output
through the runtime, e.g., whether the outgoing image con-
tains a face. The dynamic program analyzer can further offer
content-based privacy awareness. For example, if a user
wants to protect her face privacy, Peekaboo can run a deep
fake operator to replace her face with an artificial face [6].

Third, the hub program’s well-indexed nature allows the
runtime to rewrite the hub program, enabling a privacy ne-
gotiation between the users and developers. For example,
family members may not want their faces repetitively to be
collected by the "HelloVisitor" developer. The runtime can
offer "faking face" features, by inserting a "deep fake" spoof-
ing filter into the hub program. Meanwhile, this spoofing
process is also transparent to the developers. Developers
may offer extra incentives to users for removing the filter if
they want to collect new data for machine training. In doing
so, Peekaboo aims to offer an infrastructure to enable an
implicit privacy negotiation.

4 IMPLEMENTATION & PLAN
Our current implementation of Peekaboo contains the pro-
gramming supports to build hub programs and a basic hub
runtime to execute the hub programs. We implemented built-
in reusable operators as Node-Red (https://nodered.org/)
compatible Javascript packages so that developers can use
the Node-Red web browser-based flow editor as the pro-
gramming environment. As the next step, we will continue
to build the runtime described above and enable new privacy
features by incorporating program analysis and rewriting
techniques.

5 EVALUATION PLAN
The primary metric of success for any toolkit is if it can
be used to create a useful and non-trivial subset of the full
design space of applications in a manner that is faster, is
higher quality, or has more useful features than without
it [8]. We will conduct detailed experiments to evaluate
Peekaboo from three perspectives:
• The expressiveness and extensibility of the program-
ming API. We have implemented six different privacy-
sensitive smart home applications using Peekaboo, cover-
ing various scenarios (e.g., sensor types, events, data flow
structure) to demonstrate the expressiveness. Meanwhile,
we are also implementing a set of template operators to

215



Providing Architectural Support for Building Privacy-Sensitive Smart... UbiComp/ISWC ’20 Adjunct, September 12–16, 2020, Virtual Event, Mexico

help developers extend the operator with open source
libraries and the latest machine learning models.

• The system deployment practicality. We deployed Peek-
aboo on a Raspberry Pi in the past month. Our prelim-
inary experiment shows that the runtime aggregation
techniques can improve the deployment efficiency signifi-
cantly. For example, our experiment shows that a standard
Raspberry Pi can support up to 10 camera streams simul-
taneously, each running 100+ applications.

• Privacy benefits. We demonstrated the privacy benefits
through the implemented applications. We run a prelim-
inary test on a Peekaboo smart TV app, which aims to
protect users from undesired speaker recognition without
breaking the speech recognition. Our results show that
Peekaboo can reduce identity recognition (a group of 8
people) accuracy from 100% to 27% while the speech recog-
nition accuracy remains the same. We plan to expand the
privacy benefits experiments to more categories, such as
OCR, face recognition, etc.

6 EXPECTED CONTRIBUTIONS
We expect our technical contributions would be as follows:
• We propose a new software architecture to support the
building of privacy-trustable smart home applications.
The new architecture factors out the common data prepro-
cessing tasks from the cloud service side onto to the hub,
supports them as a set of reusable, chainable operators
and then runs them over the sensor data before they flow
to cloud services.

• We introduce a new privacy management mechanism,
content-based privacy management, which offers a fine-
grained privacy awareness and control that operates on
the content of each sensor data request.

• We introduce a new data-centric smart home development
toolkit, Peekaboo, along with multiple different demon-
stration apps that have been built with it. We demonstrate
that Peekaboo can offer a great deal of flexibility and re-
duce the amount of potentially sensitive data going to
cloud services.

7 BIOGRAPHICAL SKETCH
Haojian Jin is a forth-year Ph.D. student in the Human-
Computer Interaction Institute at Carnegie Mellon Univer-
sity, advised by Dr. Jason Hong and Dr. Swarun Kumar. His
research is focused on building new IoT applications while
protecting people’s privacy. Haojian is expected to graduate
at the May of 2022.

REFERENCES
[1] George Demiris, Brian K Hensel, Marjorie Skubic, and Marilyn Rantz.

2008. Senior residents’ perceived need of and preferences for" smart

home" sensor technologies. International journal of technology assess-
ment in health care 24, 1 (2008), 120.

[2] Colin Dixon, Ratul Mahajan, Sharad Agarwal, AJ Brush, Bongshin
Lee, Stefan Saroiu, and Paramvir Bahl. 2012. An operating system
for the home. In Presented as part of the 9th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 12). 337–352.

[3] Electronic Frontier Foundation. 2020. Ring Doorbell App
Packed with Third-Party Trackers | Electronic Frontier Foun-
dation. https://www.eff.org/deeplinks/2020/01/ring-doorbell-app-
packed-third-party-trackers. (Accessed on 07/06/2020).

[4] Stephen Gandel. 2020. Ring to change privacy settings after
study showed it shared personal information with Facebook and
Google - CBS News. https://www.cbsnews.com/news/ring-facebook-
google-personal-information-privacy-settings-change/. (Accessed on
07/04/2020).

[5] Google. 2020. Nest Aware - Video Recording Subscription for Nest
Cams - Google Store. https://store.google.com/us/product/nest_aware.
(Accessed on 07/06/2020).

[6] David Güera and Edward J Delp. 2018. Deepfake video detection using
recurrent neural networks. In 2018 15th IEEE International Conference
on Advanced Video and Signal Based Surveillance (AVSS). IEEE, 1–6.

[7] Kashmir Hill. 2020. Activate This ‘Bracelet of Silence,’ and Alexa Can’t
Eavesdrop - The New York Times. https://www.nytimes.com/2020/
02/14/technology/alexa-jamming-bracelet-privacy-armor.html. (Ac-
cessed on 04/16/2020).

[8] Jason I Hong and James A Landay. 2004. An architecture for privacy-
sensitive ubiquitous computing. In Proceedings of the 2nd international
conference on Mobile systems, applications, and services. 177–189.

[9] Giovanni Iachello and Jason Hong. 2007. End-user privacy in
human-computer interaction. Vol. 1. Foundations and Trends in Hu-
man–Computer Interaction.

[10] IFTTT. 2018. Privacy policy - IFTTT. https://ifttt.com/terms. (Accessed
on 07/04/2020).

[11] Anick Jesdanun. 2018. How to plan your smart home — and weigh pri-
vacy risks | The Seattle Times. https://www.seattletimes.com/business/
how-to-plan-your-smart-home-and-weigh-privacy-risks/. (Accessed
on 05/03/2020).

[12] Haojian Jin, Minyi Liu, Kevan Dodhia, Yuanchun Li, Gaurav Srivastava,
Matthew Fredrikson, Yuvraj Agarwal, and Jason I Hong. 2018. Why
Are They Collecting My Data? Inferring the Purposes of Network
Traffic in Mobile Apps. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies 2, 4 (2018), 1–27.

[13] Haojian Jin, Jingxian Wang, Swarun Kumar, and Jason Hong. 2019.
Software-Defined Cooking using a Microwave Oven. In The 25th
Annual International Conference on Mobile Computing and Networking.
1–16.

[14] Haojian Jin, Jingxian Wang, Zhijian Yang, Swarun Kumar, and Jason
Hong. 2018. Wish: Towards a wireless shape-aware world using
passive rfids. In Proceedings of the 16th Annual International Conference
on Mobile Systems, Applications, and Services. 428–441.

[15] Marc Langheinrich. 2002. A Privacy Awareness System for Ubiqui-
tous Computing Environments. In Proceedings of the 4th International
Conference on Ubiquitous Computing (Göteborg, Sweden) (UbiComp
’02). Springer-Verlag, Berlin, Heidelberg, 237–245.

[16] Alison DeNisco Rayome. 2019. Why consumers still don’t trust IoT
devices - TechRepublic. https://www.techrepublic.com/article/why-
consumers-still-dont-trust-iot-devices/. (Accessed on 05/03/2020).

[17] William Noah Schilit. 1995. A system architecture for context-aware
molbil computing. Ph.D. Dissertation. Columbia University New York,
NY.

216

https://www.eff.org/deeplinks/2020/01/ring-doorbell-app-packed-third-party-trackers
https://www.eff.org/deeplinks/2020/01/ring-doorbell-app-packed-third-party-trackers
https://www.cbsnews.com/news/ring-facebook-google-personal-information-privacy-settings-change/
https://www.cbsnews.com/news/ring-facebook-google-personal-information-privacy-settings-change/
https://store.google.com/us/product/nest_aware
https://www.nytimes.com/2020/02/14/technology/alexa-jamming-bracelet-privacy-armor.html
https://www.nytimes.com/2020/02/14/technology/alexa-jamming-bracelet-privacy-armor.html
https://ifttt.com/terms
https://www.seattletimes.com/business/how-to-plan-your-smart-home-and-weigh-privacy-risks/
https://www.seattletimes.com/business/how-to-plan-your-smart-home-and-weigh-privacy-risks/
https://www.techrepublic.com/article/why-consumers-still-dont-trust-iot-devices/
https://www.techrepublic.com/article/why-consumers-still-dont-trust-iot-devices/


UbiComp/ISWC ’20 Adjunct, September 12–16, 2020, Virtual Event, Mexico Jin et al.

[18] Daphne I. Townsend, Frank Knoefel, and Rafik A. Goubran. 2011.
Privacy versus autonomy: A tradeoff model for smart home monitor-
ing technologies. 2011 Annual International Conference of the IEEE

Engineering in Medicine and Biology Society (2011), 4749–4752.

217


	Abstract
	1 Problem statement
	2 Background & Related work
	3 System Design
	Programming Interface
	Runtime
	Program Analysis for New Privacy Features

	4 Implementation & Plan
	5 Evaluation plan
	6 Expected Contributions
	7 BIOGRAPHICAL SKETCH
	References

